Есть правило нахождении предела отношения дробно-рациональной функции при х---> к бескон.Если многочлен в числителе имеет степень, равную степени многочлена в знаменателе, то предел равен отношению коэффициентов перед СТАРШИМИ степенями.Доказывается это с деления числителя и знаменателя на старшую степень и учёта того, что константа, делённая на бесконечно большую велмчину равна 0 (беск.малой величине). В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0. Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности. Например:
В 1 примере старшая степень числителя первая и коэффициент перед ней равен 1.В знаменателе старш.степень первая и старший коэффю=1.Поэтому предел равен 1:1=1. Если решать пример с деления на старш.степень, то получим:
Конечно, удобнее пользоваться готовым правилом.
Если степень многочлена в числителе меньше степени многочлена в знаменателе, то предел будет равен 0.
Если степень многочлена в числ. больше степени мног. в знаменателе, то предел равен бесконечности.
Например:
1)3b^2-10b-10/20b^4
2) 5x-5/x^2-25.
3) 2/x^2-3x
4) 1+6a/a+2
Объяснение:
1)Надо записать под общим знаменателем 20b^4. И подставлять в числитель. 5b*(3b-2)-2(6b^2-5)/20b^4. 15b^2-10b-12b^2+10/20b^4.
2) общий знаменатель x^2-25.
X-5+4x/x^2-25. 5x-5/x^2-25
3) рассписываем x^2-9 как (X-3)(X+3). И из x^2-3x выносим X. X(X-3). и общим знаменателем будет X(X-3)(X+3). Тогда:
4X-2X+6/X(X-3)(X+3). 2X+6/X(X-3)(X+3). 2(X+3)/X(X-3)(X+3). Сокращаем (X+3).
2/X^2-3X.
4) общий знаменатель a+2.
1-3a^2+3a^2+6a/a+2. -3a^2 и +3a^2 сокращаются. 1+6a/a+2