Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
если тебе не сложно поставь 5-ку и кликни лайк
№2
Пусть собственная скорость лодки х км\час, тогда скорость по течению х+2 км\час, а против течения х-2 км\час. За 7 часов по течению лодка х+2) км, за 3 часа против течения 3*(х-2) км, что в сумме составляет 138 км. Имеем уравнение:
7(х+2) + 3(х-2) = 138
7х+14+3х-6=138
10х=130
х=13.
ответ: 13 км\час.
№3
Пусть первая сторона - x, то вторая - x+2, а третья 2x; из этого выводим:
x+x+2+2x=22
x+x+2x=22-2
4x=20
x=5
x+2=7
2x=10
ответ: первая - 5
вторая - 7
третья - 10
№3
Пусть на второй полке было - х книг, тогда на первой было - 3х книг; после того как книги переставили на второй полке стало книг - х+32, а на первой стало книг - 3х - 32; зная, что книг стало поровну (по условию), выводим уравнение:
3х-32=х+32
3х-х=32+32
2х=64
х=32 книги на второй полке
32*3=96 книг на первой полке
ответ:96 книг на первой полке,
32 книги на второй полке
Объяснение:
1. При каком значении x значение выражения 0,7^20x−5 равно 1 ?
2. При каком значении x верно равенство (16/9)^x+1=(3/4)^8
3. Решите уравнение 3^7−0,5x=81√ 3.
4.Найдите корень уравнения 8^x−1=4/√2
5.Найдите абсциссу точки пересечения графиков функций y=2,5^x+4 и y=(4/25)^x−2 .
ответ: 1. 0,25 , 2. - 5 , 3. 5 , 4. 1,5 , 5. 0.
Объяснение: Плавание вольным стилем
1. 0,7^(20x−5) =1
20x − 5 =0 ; 20x =5 ; x =5/20 =5*5 /20*5 =25 /100 = 0,25.
2. (16/9)^(x+1)=(3/4)^8 ; (4/3)²^(x+1) = (3/4)^8 ; (4/3)^2(x+1) = (3/4)^8 ;
(4/3)^2(x+1) = (3/4)^( -8) ; 2(x+1) = -8 ; x+1 = -4 ; x = -4 -1 ; x = -5 .
3. 3^(7−0,5x)=81√ 3 ; 3^(7−0,5x)=(3^4)*(3^0,5) ; 3^(7−0,5x)=3^(4+0,5) ;
7−0,5x = 4+0,5 ; - 0,5x = 4, 5 -7 ; - 0,5x = - 2, 5 ; x =5 .
4. 8^(x−1)=4/√2 ; (2³)^(x-1) =2² /( 2^ (1 /2) ) ; 2^( 3(x-1) ) =2 ^(2 -1/2) ;
3(x-1) ) =2 -1/2 ; x-1 = 1,5 /3 ; x = 1 +0,5 ; x = 1,5.
5. y=2,5^ (x+4) и y=(4/25)^(x−2) .
2,5^ (x+4) и y=(4/25)^(x−2) ; (5/2)^(x+4) = ( (2/5)² )^ (x−2) ;
(5/2)^(x+4) = ( (5/2)⁻² )^ (x−2) ; (5/2)^(x+4) = (5/2) ^ (-2 (x−2) ) ;
(5/2)^(x+4) = (5/2) ^ (-2x+4 ) ; x+4 = -2x+4 ; x+2x = 4-4 ; 3x =0 ; x=0.