а можно вспомнить два замечательных тождества arcsin x + arccos x = π/2 acrtg x + arcctg x = π/2 3sin(arctg1/4+arcctg1/4) = 3 sin (π/2) = 3 (sin π/2 = 1)
Пусть знаменатель первой дроби x, тогда числитель x + 7 и дробь принимает вид (x + 7) / x Если числитель первой дроби увеличить на 2 => x + 7 + 2 а знаменатель умножить на 2 => 2*x то получится вторая дробь (x + 7 + 2) / 2*x значение которой будет на 1 меньше значения первой дроби (x + 7) / x от большего отнимаем меньшее и пишем уравнение (x + 7) / x - (x + 9) / 2*x = 1 умножаем обе части на 2x 2*(x + 7) - x - 9 = 2x неизвестные вправо, известные влево 2x - 2x + x = 14 - 9 x = 5 первая дробь (x + 7) / x => 12/5
sin(x+y) = sin(x)cos(y) + sin(y)cos(x)
sin(arctg(x))= x/√(1+x²)
cos(arctg(x))=1/√(1+x²)
sin(arcctg(x))=1/√(1+x²)
cos(arcctg(x))=x/√(1+x²)
3sin(arctg1/4+arcctg1/4) = 3 ( sin(arctg(1/4)*cos(arcctg(1/4) + sin(arcctg(1/4)*cos(arctg(1/4)) = 3*( 1/4 / √(1+1/4²)*1/4/√(1+1/4²) + 1/√(1+1/4²)*1/√(1+1/4²)) = 3*(1/4²/(1+1/4²) + 1/(1+1/4²)) = 3*( (1+1/4²)/(1+1/4²)) =3*1=3
а можно вспомнить два замечательных тождества
arcsin x + arccos x = π/2
acrtg x + arcctg x = π/2
3sin(arctg1/4+arcctg1/4) = 3 sin (π/2) = 3 (sin π/2 = 1)
Если числитель первой дроби увеличить на 2 => x + 7 + 2
а знаменатель умножить на 2 => 2*x
то получится вторая дробь (x + 7 + 2) / 2*x
значение которой будет на 1 меньше значения первой дроби (x + 7) / x
от большего отнимаем меньшее и пишем уравнение
(x + 7) / x - (x + 9) / 2*x = 1 умножаем обе части на 2x
2*(x + 7) - x - 9 = 2x неизвестные вправо, известные влево
2x - 2x + x = 14 - 9
x = 5
первая дробь (x + 7) / x => 12/5