Итак, если уравнение вида 1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х: х(ах+в) =0. Произведение равно равно нулю, если хотя бы один из множителей равен нулю. Получаем: х=0 или ах+в=0 х=0 или х=-в/а - искомые решения. 2) ах^+с=0, т. е. в=0, то имеем два случая: а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0. б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Если так не видишь,что эти уравнения похожи на обычные квадратные, то сделай замену х^2=t
а) х^4-3х^2+2=0 сделаем замену и получим:
t^2-3t+2=0, дальше по теореме Виетта ищем корни, которые видны сразу:
t=2
t=1 , дальше возвращаемся к изначальным переменным:
х^2=2
х^2=1, отсюда:
х=корень из 2
х=минус корень из 2
х=1
х=-1
Я думаю ты поняла и поэтому я опустила моменты с заменами. Если непонятно спрашивай
б)х^4-10х^2+9=0
х^2=9
х^2=1
ответ:х=3
х=-3
х=1
х=-1
в)х^4-5х^2+4=0
х^2=4
х^2=1
ответ:х=2
х=-2
х=-1
х=1
г)х^4-26х^2+25=0
х^2=25
х^2=1
ответ:х=5
х=-5
х=1
х=-1
д)х^4-20х^2+64=0
х^2=16
х^2=4
ОТвет:х=4
х=-4
х=2
х=-2
1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х:
х(ах+в) =0.
Произведение равно равно нулю, если хотя бы один из множителей равен нулю.
Получаем:
х=0 или ах+в=0
х=0 или х=-в/а - искомые решения.
2) ах^+с=0, т. е. в=0, то имеем два случая:
а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0.
б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Откуда,
х=-√с/√а или х=√с/√а - искомые решения.