Пусть х кубометров грунта в час может вырыть первый экскаватор, тогда второй экскаватор роет у кубометров в час. За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1) Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325 2х=50 х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений: 6х+6у=330 6×25+6у=330 6у=330-150 6у=180 у=180÷6 у=30 кубометров грунта в час вырывает второй экскаватор. ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Відповідь: a) (-1; -4) b) x=-1 с) ОХ: (-1+√2; 0) и (-1-√2; 0) OY: (0; -2) e) в I, II, III и IV четвертях
Пояснення:
a) x=-b/2a x=-4/4=-1 y=-4
b) ось симметрии параболы - прямая, проходящая через её вершину (-1;-4) и параллельная оси Оу, поэтому абцисса ( х ) в любой точке на этой прямой одинакова и равна -1 => х = -1
c) при пересечении с осью ОХ ордината y=0 => 2x^2+4x-2=0
x1=-1+√2 x2=-1-√2
при пересечении с осью OY абсцисса х=0 y=-2
e) ветви параболы направлены вверх т.к. коэффициент а больше 0 а=2.Расположена она во всех 4-ёх четвертях
За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1)
Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325
2х=50
х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений:
6х+6у=330
6×25+6у=330
6у=330-150
6у=180
у=180÷6
у=30 кубометров грунта в час вырывает второй экскаватор.
ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Відповідь: a) (-1; -4) b) x=-1 с) ОХ: (-1+√2; 0) и (-1-√2; 0) OY: (0; -2) e) в I, II, III и IV четвертях
Пояснення:
a) x=-b/2a x=-4/4=-1 y=-4
b) ось симметрии параболы - прямая, проходящая через её вершину (-1;-4) и параллельная оси Оу, поэтому абцисса ( х ) в любой точке на этой прямой одинакова и равна -1 => х = -1
c) при пересечении с осью ОХ ордината y=0 => 2x^2+4x-2=0
x1=-1+√2 x2=-1-√2
при пересечении с осью OY абсцисса х=0 y=-2
e) ветви параболы направлены вверх т.к. коэффициент а больше 0 а=2.Расположена она во всех 4-ёх четвертях