(x-a)(x²-10x+9)=0 (x-a)(x-1)(x-9)=0 x₁=a; x₂=1; x₃=9 - корни уравнения составим из полученных корней все возможные последовательности: 1) 1, 9, а 2) 1, а, 9 3) а, 1, 9 4) а, 9, 1 5) 9, а, 1 6) 9, 1, а получено 6 последовательностей. убираем убывающие (4), (5), (6). получили три возрастающих последовательности. известно, что это арифметические прогрессии. находим значение а в каждой из них: 1) 1, 9, а d=9-1=8 => a=9+8=17 2) 1, a, 9 a=(1+9)/2=10/2=5 3) a, 1, 9 d=9-1=8 a=1-8=-7 итак, а равны 17, 5 и -7 x²-10x+9=0 корни уравнения находим по теореме виета: x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁< x₂)
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)