3. Мотоцикліст подолав відстань 180 км з деякою швидкістю. Повертаючись назад, він 2/3 шляху їхав з тією самою швидкістю, а потім збільшив її на 5 км/годі на зворотний шлях витратив на 8 хв менше. Скільки часу знадобилось мотоциклісту на всю поїздку?
Дана функция у = (х-1)²/x².
1.Область определения функции. D ∈ R : x ≈ 0.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
График функции пересекает ось X при f = 0.
Значит, надо решить уравнение (х-1)²/x² = 0.
Решаем это уравнение (достаточно приравнять нулю числитель):
(х-1)² = 0, х-1 = 0, х = 1.
Точки пересечения с осью X: (1; 0).
График пересекает ось Y, когда x равняется 0.
Подставляем x = 0 в (x - 1)²/x².
Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.
3. Промежутки знакопостоянства функции.
Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.
4. Симметрия графика (чётность или нечётность функции).
f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).
Поэтому функция не чётная и не нечётная.
5. Периодичность графика. Не периодична.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²
или y' = (2x - 2)/x³.
Находим нули функции. Для этого приравниваем производную к нулю
(достаточно числитель): 2x-2 = 0
Откуда: x1 = 2/2 = 1.
(-∞ ;0) (0; 1) (1; +∞)
f'(x) > 0 f'(x) < 0 f'(x) > 0
функция возрастает функция убывает функция возрастает.
В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0
Решаем это уравнение
Корни этого ур-ния
x_{1} = \frac{3}{2}
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x_{1} = 0.
\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.
\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.
- пределы равны, значит, пропускаем соответствующую точку.
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 3/2]
Выпуклая на промежутках
[3/2, oo)
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.
10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.
11. Построение графика функции по проведенному исследованию дан в приложении.
2)5m^4-320mn³ =5m(m^3 - 64n^3) = 5m[m^3 -(4n)^3] = 5m(m-4n)(m^2+4mn + +16n^2 )
3)6c^5-6c^8 = 6c^5(1-c^3) = 6c^5(1 - c)(1+c+c^2)
№716.Разложите на множители:
1)с^6+с^9 = c^6(1 + c^3) = c^6(1+c)(1-c+c^2)
2)m^9-n^9 = (m^3)^3 - (n^3)^3 = (m^3 - n^3)(m^6 +m^3n^3 +n^6
3)a^8-b^4 = a^5*a^3 - b*b^3 = (a^5*a - b*b)[(a^5*a)^2 +a^5*a*b*b + (b*b)^2] =
= (a^6 - b^2)(a^12 + a^6b^2 + b^4)
№718.Разложите на множители:
1)15сx+2cy-cxy-30c = 15c(x-2) - cy(x-2) = (x-2)(15c -cy) = c(15-y)(x-2)
2)35a²-42ab+10a²b-12ab² = 5a² (7+2b) - 6ab(7+2b) = ((7+2b)(5a² - 6ab) =
=a(5a-6b)(7+2b)
3)x³+x²y+x²+xy = x²(x+1) + xy(x+1) = (x+1)(x² + xy)
4)mn^4-n^4+mn³-n³ = n^4(m-1) + n^3(m-1) = (m-1)(n^4+n^3)