3. По шоссе идут две машины с одной и той же скоростью. Если пер- вая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на
10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за
3 ч. с какой скоростью идут автомашины? Краткое условие задачи
Двузначное число, где а десятков и b единиц представим в виде 10a+b (это разложение числа по разрядам). Далее записываем условие задачи: 1) первое предложение
(10a+b):(a+b)=7(ост.3)
10a+b=7(a+b)+3
10a+b=7a+7b+3
3a-6b=3
a-2b=1 - это первое уравнение системы.
2) читаем второе предложение задачи
При перестановке цифр данного двузначного числа получим число 10b+a. Известно, что оно на 36 меньше, чем число 10a+b. Запишем это: 10a+b-36=10b+a
9a-9b=36 |:9
a-b=4 - это второе уравнение системы
Решаем систему:
Итак, искомое двузначное число равно 73.
ответ:Зависимость x1(t) и x2(t) - это линейные функции, следовательно графиком будет являться прямая, значит тебя движутся равномерно. Начальные координаты тел: x01 = 10 м х02 = 4 м Проекции скоростей (в данной задаче они же и модули скоростей) Vx1 = 2 м/с Vx2 = 5 м/с Тела встретились, значит х1=х2 10 + 2t = 4 + 5t 3t = 6 t = 2 с Теперь, чтобы найти координату точки встречи, подставим найденное t в любое уравнение движения. Если в первое: х = 10 + 2t = 10 + 2*2 = 14 м Если во второе: х = 4 + 5t = 4 + 5*2 = 14 м
Объяснение: