3. Решить задачи.
А) Комбинаторные задачи
1) Сколько двузначных чисел, все цифры которых различны,
можно составить из цифр 0; 4 и 2?
2) При встрече 4 школьника обменялись рукопожатиями.
Сколько всего было сделано рукопожатий?
Б) Задачи на перестановку
3) Рассчитайте значение 4! =
4) Государственные флаги некоторых стран состоят из трёх
горизонтальных полос разного цвета. Сколько существует
различных вариантов флагов с белой, синей и красной
полосой?
5) Сколько различных четырёхзначных числа можно
составить из цифр 3, 6, 5 и 8 без повторения их в записи
числа?
6) Сколько различных четырехзначных чисел, в которых
цифры не повторяются, можно составить из цифр 7, 0, 2, 3?
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
log(1/2)(2x-4)=-2
{2x-4>0⇒2x>4⇒x>2
{2x-4=4⇒2x=8⇒x=4
ответ x=4
2
log(π)(x²+2x+3)=log(π)6
{x²+2x+3>0 D=4-12=-8⇒x∈R
{x²+2x+3=6⇒x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 U x2=1
ответ x=-3;x=1
3
log(a)x=log(a)10-log(a)2
log(a)x=log(10/2)
log(a)x=log(a)5
x=5
ответ x=5
4
1/2*log(2)(x-4)+1/2*(2x-1)=log(2)3
{x-4>0⇒x>4
{2x-1>0⇒2x>1⇒x>0,5
x∈(4 ;∞)
lof(2)√(x-4)+log(2)√(2x-1)=log(2)3
log(2)√[(x-4)(2x-1)]=log(2)3
√[(x-4)(2x-1)]=3
(x-4)(2x-1)=9
2x²-x-8x+4-9=0
2x²-9x-5=0
D=81+40=121
x1=(9-11)/4=-0,5 не удов усл
x2=(9+11)/4=5
ответ x=5