Пусть случайная величина Х - количество сданных экзаменов. Очевидно, что она может принимать значения 0,1,2. Вероятности этих событий Р0=0,1*0,3=0,03; Р1=0,9*0,3+0,1*0,7=0,34, Р2=0,9*0,7=0,63. Проверка: Р0+Р1+Р2=1, так что вероятности найдены верно (события Р0,Р1,Р2 составляют полную группу, а сумма вероятностей таких событий должна быть равна 1).
Теперь составляем закон распределения данной дискретной случайной величины (Xi- значение случайной величины, Pi - соответствующая вероятность).
Теперь составляем закон распределения данной дискретной случайной величины (Xi- значение случайной величины, Pi - соответствующая вероятность).
Xi 0 1 2
Pi 0,03 0,34 0,63
Математическое ожидание M[X]=∑Xi*Pi=0*0,03+1*0,34+2*0,63=1,6
Дисперсия D=∑(Xi-M[X])²*Pi=(0-1,6)²*0,03+(1-1,6)²*0,34+(2-1,6)²*0,63=0,3
Первый мастер:
производительность - х ед./час
время работы - 1/ х часов
Второй мастер:
производительность - у ед./час
время работы - 1/у ч.
Система уравнений:
{4(x+y) = 1
{1/х - 1/у=6 |× xy
{x+y = 1/4
{1y -1x = 6xy
{y=0.25-x
{y-x=6xy
метод подстановки:
(0.25-x) -x=6x (0.25-x)
0.25-2x = 1.5x - 6x²
0.25-2x-1.5x +6x²=0
6x²-3.5x+0.25 =0
D= (-3.5)² - 4*6*0.25= 12.25-6= 6.25= 2,5²
х₁= (3,5-2,5) /(2*6) = 1/12
х₂= (3,5+2,5) /12 = 6/12= 1/2
у₁= 0,25- 1/12 = 1/4 - 1/12= 3/12 - 1/12= 2/12=1/6
у₂= 0,25 - 1/2 = 0,25 - 0,5= -0,25 - не удовл. условию
Следовательно:
х= 1/12 ( ед./час) производительность первого мастера
у=1/6 (ед./час) производительность второго мастера
1: 1/12 = 1/1 * 12/1 = 12 (ч.) время работы первого мастера
1: 1/6 = 6 (ч.) время работы второго мастера
ответ: за 12 часов может покрасить кабинет самостоятельно первый мастер, за 6 часов - второй мастер.