1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении.
значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная :
x∉R видим что первой производной нет ,ищем вторую
функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
значит экстремумы в точках -(1;-1)
а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой .
2)
значит экстремумы в точках (-2;16),(2;16)
А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2
убывает на промежутках [-2;2]
возрастает (-∞;2]∪[2;+∞)
3)сначала найдём производные
1 производная :
x∉R
видим что первой производной нет ,ищем вторую
функция выпукла:
(-∞;0)
f"(x)<0
функция вогнута
(0;+∞)
f"(x)>0
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
а) уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.б) уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.
Объяснение:
Уравнение имеет один корень при D = 0.
a) D = a^2 - 100
a^2 = 100
a = -10 или a = 10
Найдём этот корень:
5x^2 - 10x + 5 = 0 или 5x^2 + 10x + 5 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
ответ: уравнение имеет один корень: 1 при а = 10; или -1 при а = -10.
б) 3x^2 - ax + 3 = 0
D = a^2 - 36
a^2 = 36
a = 6 или а = -6
Найдём этот корень:
3x^2 - 6x + 3 = 0 или 3x^2 + 6x + 3 = 0
Решим эти квадратные уравнение с теоремы Виэтта, получаем решения:
1 и -1, соответственно.
ответ: уравнение имеет один корень: 1 при а = 6; или -1 при а = -6.