3. В спортивном клубе занимаются 20 человек. Сколько существует составить из них три команды для участия в разных соревнованиях? В первой команде должно быть 9 человек, во второй – 6, в третьей – 5. 4. На кинофестивале награждают лучшие фильмы года из 12 отобранных. Сколькими могут распределиться среди них 7 номинаций, если каждый фильм может иметь несколько наград?
{ x^2 - 1 > 0
{ log(1/2) (x^2 - 1) > 0
Функция y = log(1/2) (x) - убывающая, поэтому
{ (x + 1)(x - 1) > 0
{ x^2 - 1 > 1; x^2 - 2 > 0
Получаем
{ x< -1 U x > 1
{ x < -√2 U x > √2
Область: x < -√2 U x > √2
2) Решаем неравенство
Функция y = log3 (x) - возрастающая, поэтому
log3 (log(1/2) (x^2 - 1)) < 1 = log3 (3)
log(1/2) (x^2 - 1) < 3 = log(1/2) (1/8)
Функция y = log(1/2) (x) - убывающая, поэтому
x^2 - 1 > 1/8
x^2 > 1 + 1/8 = 9/8
|x| > 3/√8 ~ 1,06 < √2
ответ: x < -√2 U x > √2
Неравенство вообще не имеет значения, все определяет область определения, простите за тавтологию.
S=0,5*a*b*sinx
поскольку это равнобедренный треугольник, то стороны а и b одно и тоже
плюс нам дан угол и площадь
т.е. можно переписать формулу площади уже с известными нам величинами
значит боковые стороны равны 12
если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90
половина основания лежит против угла в 60 градусов, используем синус:
поскольку это половинка основания, то все основание будет в два раза больше
итоговый ответ: стороны равны