Руслан, прибавлять надо 3, никакого минуса там нет. Уравнение: (В+14)/(В+3)=(В+7)/В+37/88 Проблема в том, что оно не решается в целых числах. Если домножить на 88*B*(B+3), то получится 88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3) 88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B 88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B Вычитаем 88*B^2 слева и справа и умножаем числа 1232*B = 37*B^2 + 880*B + 111*B + 1848 37*B^2 - 241*B + 1848 = 0 А теперь находим дискриминант D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0 Решений нет. Но даже если мы что-то напутали, и D = +215423, или D = 58081 + 273504 = 331585 Все равно это не квадрат целого числа, и B иррационально.
Объяснение:
Составьте квадрат суммы двух одночленов.ответ запишите в виде степени и в виде многочлена.(2x + 5)² = 4x² + 20x + 25
(x + 3)² = x² + 6x + 9
(6a + 7b)² = 36a² + 84ab + 49b²
(2k + 3)² = 4k² + 12k + 9
Пользуясь формулой квадрата суммы,вычислите значение выражения:10,2² = (10+0,2)² = 100 + 4 + 0,04 = 104,04
104²=(100+4)² = 10000 + 800 + 16 = 10816
32² = (30 + 2)² = 900 + 120 + 4 = 1024
51² = (50 + 1)² = 2500 + 100 + 1 = 2601
ПРИМЕЧАНИЕ:все числа во второй степени.
Представьте многочлен в виде квадрата суммы:4a²+4ab+b² = (2a + b)²
k²+2kb+b² = (k + b)²
1+2m+m² = (1 + m)²
1/4+p+p² = (1/2 + p)²
ПРИМЕЧАНИЕ:4a,b k,b m p во второй степени
Уравнение:
(В+14)/(В+3)=(В+7)/В+37/88
Проблема в том, что оно не решается в целых числах.
Если домножить на 88*B*(B+3), то получится
88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3)
88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B
88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B
Вычитаем 88*B^2 слева и справа и умножаем числа
1232*B = 37*B^2 + 880*B + 111*B + 1848
37*B^2 - 241*B + 1848 = 0
А теперь находим дискриминант
D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0
Решений нет.
Но даже если мы что-то напутали, и D = +215423, или
D = 58081 + 273504 = 331585
Все равно это не квадрат целого числа, и B иррационально.