Уравнение касательной для функции f(x) = e^x в точке x = x0 имеет вид y = (e^x0) * x + b { Общее уравнение касательной для функции f(x): y = mx+b, где m - slope factor,m = d/dx*f(x), в нашем случае m=d/dx*f(x) = (e^x)' = e^x } если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1 т.к. формула касательной для нашей функции y = (e^x0) * x + b, то e^x0 = 1, b = 1, откуда x0 = 0, в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1, совпадают, f(0) = y(0) = 1 таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
cos2x=cosx-1 так по формуле cos2x=cos²x-sin²x а 1=cos²x+sin²x теперь подставляем эти формулы вместо cos2x cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки cos²x-1+cos²x-cosx+cos²x+1-cos²x 2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0 1) cosx=0 x=2pk 2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒ -2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант 2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2 КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX 1) COSX=1 X=2Pk 2) COSX=3|2 X=+-arccos3|2+2Pk ,
имеет вид y = (e^x0) * x + b
{
Общее уравнение касательной для функции f(x): y = mx+b,
где m - slope factor,m = d/dx*f(x),
в нашем случае m=d/dx*f(x) = (e^x)' = e^x
}
если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1
т.к. формула касательной для нашей функции y = (e^x0) * x + b, то
e^x0 = 1, b = 1, откуда x0 = 0,
в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)),
действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1,
совпадают, f(0) = y(0) = 1
таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
cos²x-sin²x-cosx+(cos²x+sin²x) таким образом мы вместо sin²x=1-cos²x
cos²x-(1-cos²x)-cosx+(cos²x+(1-cos²x)) открываем скобки
cos²x-1+cos²x-cosx+cos²x+1-cos²x
2cos²x-cosx=0 ⇒ cosx(2cosx-1)=0
1) cosx=0 x=2pk
2) 2cosx-1=0 ⇒ 2cosx=1 ⇒cosx=1|2⇒x=P|3+2Pk
II 2sin²x-5=-5cosx ⇒ 2(1-cos²x)-5 +5cosx=0 ⇒2-2cos²x-5+5cosx ⇒
-2cos²x-3+5cosx=0 \-1 ⇒ 2cos²x+3-5cosx=0 ⇒ 2cosx-5cosx+3=0 ⇒ cosx=a теперь вместо кос вставим а и решаем дискриминант
2a²-5a+3=0 D=∨25-2*3*4=1 X1=(5-1)|4=1 X2=(5+1)|4= 3|2
КОРНИ НАЙДЕНЫ А ТЕПЕРЬ ПОДСТАВЛЯЕМ COSX
1) COSX=1 X=2Pk
2) COSX=3|2 X=+-arccos3|2+2Pk ,