В иррациональных уравнениях кроме ОДЗ нужно всегда учитывать дополнительные условия (ДУ) или всегда для проверки подставлять полученные корни в исходное уравнение.
Рассмотрим исходное уравнение:
Далее мы возводим это уравнение в квадрат, но это неэквивалентный переход - например, неправильное равенство -1 = 1 переходит в правильное 1 = 1, поэтому на этом этапе легко приобрести лишние корни, что и произошло.
В правой части исходного уравнения находится неотрицательный корень, поэтому в ДУ необходимо потребовать неотрицательность левой части:
Как раз это ДУ и позволяет в процессе решения откинуть лишний корень
В иррациональных уравнениях кроме ОДЗ нужно всегда учитывать дополнительные условия (ДУ) или всегда для проверки подставлять полученные корни в исходное уравнение.
Рассмотрим исходное уравнение:
Далее мы возводим это уравнение в квадрат, но это неэквивалентный переход - например, неправильное равенство -1 = 1 переходит в правильное 1 = 1, поэтому на этом этапе легко приобрести лишние корни, что и произошло.
В правой части исходного уравнения находится неотрицательный корень, поэтому в ДУ необходимо потребовать неотрицательность левой части:
Как раз это ДУ и позволяет в процессе решения откинуть лишний корень
6sinxcosx=5*(cos^2x - sin^2x)
6sinxcosx=5cos^2x - 5sin^2x
5sin^2x + 6cosxsinx - 5cos^2x = 0 /:cos^2x ≠ 0
однородное уравнение второй степени
5tg^2x + 6tgx - 5 = 0
Пусть tgx = t, причём t ∈ (- беск; + беск )
Тогда решим кв. уравнение:
5t^2 + 6t - 5 = 0
D = 36 + 4*5*5 = 36 + 100 = 136
√D = √136 = 2√34
t1 = ( - 6 + 2√34)/ 10 = ( - 3 + √34)/ 5
t2 = ( - 6 - 2√34)/ 10 = ( - 3 - √34)/ 5
tgx = ( - 3 + √34)/ 5
x = arctg ( - 3 + √34)/ 5 + pik, k ∈Z
tgx = ( - 3 - √34)/ 5
x = arctg ( - 3 - √34)/ 5 + pik, k ∈Z