Пусть (х-2 ) будет скорость туриста из пункта А в пункт В х скорость туриста из пункта В в пункт С 15/(х-2) время ,за которое турист из А в В 16/х вркмя ,за которое прашел турист из В в С При передвижении из пункта В в пункт С турист затратил времени меньше на 30 минут.,т.е. 1/2 часа. 15/(х-2) - 16/х =1/2 30х-32х+64=х²-2х х²=64 х=+/-8 подходит для ответа только х=8 км/час. это скорость туриста из пункта В в С 8км/ч. - 2км/ч.=6км./ч скорость туриста из пункта А в В
х скорость туриста из пункта В в пункт С
15/(х-2) время ,за которое турист из А в В
16/х вркмя ,за которое прашел турист из В в С
При передвижении из пункта В в пункт С турист затратил времени меньше на 30 минут.,т.е. 1/2 часа.
15/(х-2) - 16/х =1/2
30х-32х+64=х²-2х
х²=64 х=+/-8 подходит для ответа только х=8 км/час.
это скорость туриста из пункта В в С
8км/ч. - 2км/ч.=6км./ч скорость туриста из пункта А в В
2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж: