I этап. Постановка задачи и составление математической модели.
Пусть собственная скорость катера х км/ч , а скорость течения реки у км/ч. Тогда расстояние , которое пройдет катер по течению реки 1,5(х+у) км . Расстояние , которое пройдет катер против течения реки 2,25(х-у) км (т.к. 2 ч. 15 мин. = 2 15/60 ч. = 2,25 ч.) Зная, что расстояние между пристанями составляет 27 км. Составим систему уравнений: {1.5(x+y) =27 {2.25(х-у) = 27 Полученная система уравнений - математическая модель задачи.
II этап. Работа с математической моделью. Решение системы уравнений: {1.5 x + 1.5y = 27 |×1.5 {2.25 x - 2.25y = 27
{2.25x + 2.25y = 40.5 {2.25x - 2.25y = 27 Метод алгебраического сложения. 2,25 х + 2,25у + 2,25х -2,25 у = 40,5 +27 4,5х = 67,5 х= 67,5 : 4,5 х= 15 Выразим из первого уравнения системы у через х : y=(27:1,5 ) - х= 18-х у=18-15=3
III этап. Анализ результата. Собственная скорость лодки 15 км/ч ; скорость течения 3 км/ч. Проверим решение: 1,5 (15+3) = 2,25(15-3) = 27 (км) расстояние между пристанями
ответ: 15 км/ч собственная скорость лодки , 3 км/ч скорость течения.
Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
Пусть собственная скорость катера х км/ч , а скорость течения
реки у км/ч.
Тогда расстояние , которое пройдет катер по течению реки 1,5(х+у) км . Расстояние , которое пройдет катер против течения реки 2,25(х-у) км (т.к. 2 ч. 15 мин. = 2 15/60 ч. = 2,25 ч.)
Зная, что расстояние между пристанями составляет 27 км. Составим систему уравнений:
{1.5(x+y) =27
{2.25(х-у) = 27
Полученная система уравнений - математическая модель задачи.
II этап. Работа с математической моделью.
Решение системы уравнений:
{1.5 x + 1.5y = 27 |×1.5
{2.25 x - 2.25y = 27
{2.25x + 2.25y = 40.5
{2.25x - 2.25y = 27
Метод алгебраического сложения.
2,25 х + 2,25у + 2,25х -2,25 у = 40,5 +27
4,5х = 67,5
х= 67,5 : 4,5
х= 15
Выразим из первого уравнения системы у через х :
y=(27:1,5 ) - х= 18-х
у=18-15=3
III этап. Анализ результата.
Собственная скорость лодки 15 км/ч ;
скорость течения 3 км/ч.
Проверим решение:
1,5 (15+3) = 2,25(15-3) = 27 (км) расстояние между пристанями
ответ: 15 км/ч собственная скорость лодки , 3 км/ч скорость течения.
Чтобы сложить дроби с одинаковыми знаменателями, нужно сумму числителей записать в числитель, а в знаменателе записать общий знаменатель. Если необходимо - сократить получившуюся дробь и привести к виду правильной дроби.
1/5+2/5=1+2 /5=3/5
3/8+1/8=3+1 /8=4/8=1/4
Чтобы сложить дроби с разными знаменателями, необходимо найти наименьшее кратное знаменателей и записать в знаменателе, а числители умножить на дополнительные множители и сложить, сумму записать в числителе. По необходимости сократить получившуюся дробь и привести к виду правильной дроби.
3/5+1/2= 3*2 + 1*5 /10=6+5 /10=11 /10= 1 1/10
3/8+1/3= 3*3+1*8 / 24= 9+8 /24=17/24