Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
polibfbxbdbdbcb
07.02.2020 21:59 •
Алгебра
32. Составьте квадратное уравнение по его корням: 1) 2; 7; 2) -3; 5; 3) -1; 4; 4) -2,1; -0,3; 5) 0,2; 5,3; 6) -5; 5; 1 3 4 3 7) 10) 5 1/3; 2 2 3 11) -3 = 15; 5 9) - 77; 17; 12) 2; 11. номер 32
Показать ответ
Ответ:
yuliabler
23.04.2020 08:05
1) 27*2^x-8*3^x=0 /3^x
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3
2) 2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x) = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)
(6^x) = 6^1
x = 1
ответ: х = 1
3) 9*(4^x) - 13*(6^x) + 4*(9^x) = 0
9*(2^2x) - 13*(2^x)*(3^x) + 4*(3^2x) = 0 /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18
t2 = 1
1) (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2) (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1
0,0
(0 оценок)
Ответ:
svetasvetlana7
23.04.2020 08:05
1) 27*2^x-8*3^x=0 /3^x
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3
2) 2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x) = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)
(6^x) = 6^1
x = 1
ответ: х = 1
3) 9*(4^x) - 13*(6^x) + 4*(9^x) = 0
9*(2^2x) - 13*(2^x)*(3^x) + 4*(3^2x) = 0 /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18
t2 = 1
1) (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2) (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1
0,0
(0 оценок)
Популярные вопросы: Алгебра
Zylfia221
20.04.2020 16:38
Найдите периметр ромба авсd, в котором угол в=60 градусов, ас=10,5 см....
dpravdivaya
20.04.2020 16:38
Решите трёх автобазах 660 машин. на второй базе на 18 больше, чем на первой. на третьей базе в два раза больше машин, чем на первых двух вместе. сколько машин на первой...
Alllexxxsss
20.04.2020 16:38
Решить неравенства: -6 5x-1 5 0 4x+3 1 -2 6x+7 1...
idjrglkuahregklha
28.10.2022 07:32
A)5x-4.5=3x+2.5 б) 2x-(6x-5)=45 заранее ))...
Мариелла17
09.01.2021 23:54
Чему равен ctg(-a)*tg(-a) *-умножить...
пожирательзнаний1
22.09.2020 13:36
Решите задачу: Функцію у=-3х+4 задано для -2 х 3.Знайдіть область значень цієї функції...
londonparisch
03.05.2022 03:14
Знайдіть перший член геометричної прогресії якщо с4=1/98 а знаменник q=2/7...
ника2751
25.02.2021 17:12
. Дана функция: у=х2-6х+5 а) определите направление ветвей параболы; б) вычислите координаты вершины параболы; в)запишите ось симметрии параболы; г) найдите нули функции;...
nikitaaleksandrov
30.06.2021 00:10
Виконайте множення одночленів: 1) 12pk3 - (-3p1k?); 2) 0,8a°3 - 2,5ab; 4) 0,27a*b*ев -35 a*b*с. *, 5) -14x уг* 12 x°у°2 ; 6) axy-(-62°y®)-1,5х2в. . 3) -4,6x®y5.0,5x4y?;...
Joker5855
14.04.2020 17:27
Дослідити дану функцію:y=x^2-6x+5...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3
2) 2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x) = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)
(6^x) = 6^1
x = 1
ответ: х = 1
3) 9*(4^x) - 13*(6^x) + 4*(9^x) = 0
9*(2^2x) - 13*(2^x)*(3^x) + 4*(3^2x) = 0 /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18
t2 = 1
1) (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2) (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3
2) 2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x) = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)
(6^x) = 6^1
x = 1
ответ: х = 1
3) 9*(4^x) - 13*(6^x) + 4*(9^x) = 0
9*(2^2x) - 13*(2^x)*(3^x) + 4*(3^2x) = 0 /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18
t2 = 1
1) (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2) (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1