Объяснение:Обратим внимание на то, что требуется сделать букет из 7 цветов так, чтобы в нем было хотя бы три красных тюльпана, а на количество белых тюльпанов ограничений нет. Тогда, заключаем, что в букете
1) в точности 7 тюльпанов;
2) наименьшее количество красных тюльпанов 3;
3) наибольшее количество красных тюльпанов 7.
По условию количество красных тюльпанов в саду 10, то все эти 3 пункта возможны. Обозначим белые тюльпаны через 0, а красные тюльпаны через 1. Так как порядок размещения не даёт новые то получаем следующие
Есть такое правило: чтобы определить, на какую цифру оканчивается число, нужно: 1)посмотреть на само число и найти последнюю цифру этого числа 2)производить операции будем с этой цифрой, в данном случае, с 3. 3)поделить степень этого числа на 4. далее самое интересное: 1)если у тебя степень делится на 4 без остатка, то это число будет оканчиваться на цифру числа в 4 степени. 2)если у тебя степень делится с остатком, то надо смотреть на остаток.если остаток 3, то число будет оканчиваться на эту же цифру, только в 3 степени этого же числа.если на 2, то число будет оканчиваться на ту же цифру, как и это число во второй степени. следуем по правилу: число 3 оканчивается на 3.значит, будем ее рассматривать(просто бывает что 12435 надо возвести в огромную степень, везде надо смотреть на последнюю цифру) далее, делим степень на 4: 17: 4=4 и остаток 1.значит, по правилу, число 3 в 17 степени будет оканчиваться на ту же цифру, как 3 в 1 степени.а 3 в первой степени=3. следовательно, 3 в 17 степени будет оканчиваться на 3 подробнее - на -
ответ:Всего
Объяснение:Обратим внимание на то, что требуется сделать букет из 7 цветов так, чтобы в нем было хотя бы три красных тюльпана, а на количество белых тюльпанов ограничений нет. Тогда, заключаем, что в букете
1) в точности 7 тюльпанов;
2) наименьшее количество красных тюльпанов 3;
3) наибольшее количество красных тюльпанов 7.
По условию количество красных тюльпанов в саду 10, то все эти 3 пункта возможны. Обозначим белые тюльпаны через 0, а красные тюльпаны через 1. Так как порядок размещения не даёт новые то получаем следующие
0000111
0001111
0011111
0111111
1111111
Всего