33.8. 1)(x + 1): - 4x = 5 + x²(x + 3); 2)(1 - y): + 8y = 7 + yº(3 - y);
3) (x + 1)2 + (x - 1)3 - 2x3 = 12;
4) (1 + y) + (1 - y)3 – 6y2 = 3y - 1.
33.9. 1) (2 + x)3 - x2(6 + x) = 11x + 19;
2) (2-2)- 2²(2 - 6) = 132 – 7;
3) (y + 3)3 - 2y - 30 = yº(9+y);
4) (3 - t) + 3t + 21 = -t?(t – 9).
4х=-8
х=-2 В любое уравнение подставить х=-2 , например , в первое :
2·(-2)+5у=36
-4+5у=36
5у=36+4
5у=40
у=40:5
у=8
ответ : (-2;8)
2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим
-8х=-80 ( складывайте только соответствующие переменные и значения )
х=10
подставить х=10 в любое уравнение системы , например , во второе:
-4·10-9у=-67
-40-9у=-67
-9у=-67+40
-9у=-27
у=-27:(-9)
у=3
ответ:(10;3)
3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы
7у+(-7у)-9х+(-9х)=-90+36
-18х=-54
х=3
подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36
7у-27=36
7у=27+36
7у=63
у=63:7
у=9
ответ:(3;9)
1.
104° - тупой угол, только один в треугольнике.
180°-104°=76° - сумма двух других углов. они равны, т.к. треугольниу равнобедренный.
76°:2=38° - углы при основании равнобедренного треугольника.
2.
а) Сумма острых углов прямоугольного треугольника равна 90°.
90-30=60° - величина второго угла
Т.к. EF - биссектриса, то
60°:2=30° - ∠DEF
ED - основание ΔDEF, ∠DEF=∠EDF, EF=DF, следовательно, треугольник равнобедренный.
б) СF<DF
3.
х см - длина одной стороны
х+17 см - длина другой стороны.
Р=77 см
Примем большую сторону за основание.
х+х+х+17=77
3х=77-17
3х=60
х=20(см) - длина равных сторон
20+17=37(см) - длина основания
Теперь примем за основание меньшую сторону.
х+2*(х+17)=77
х+2х+34=77
3х=43
х≈14,3(см) - длина основания
14,3+17=31,3(см) - длина каждой из двух других сторон.