Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
(х – 1) + 3(х - 1) = 84
х – 1 + 3х – 3 = 84
4х = 84 + 3 + 1 = 88
х = 22
Значит 22 яблони было первоначально на первом участке.
Найдем сколько было первоначально яблонь на втором участке:
84 – 22 = 62
Произведем проверку:
Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони.
21 + 63 = 84
ответ: На втором участке изначально было 62 яблони.
а) x^2 + 4x + 10 >= 0
D = 4^2 - 4*10 = 16 - 40 = -24
a>0; D<0
(-∞;+∞)
ответ: 2. Решением неравенства является вся числовая прямая
b) - x^2 + 10x - 25 > 0/ *(-1)
x^2 - 10x + 25 < 0
D = -10^2 - 4 * 25 = 100 - 100 = 0
a>0; D=0
ответ: 1. Неравенство не имеет решений
с) x^2 + 3x + 2 <= 0
D = 3^2 - 4*2 = 9 - 8 = 1
a>0; D>0
x1 = -3 - 1/2 = -2
x2 = -3+1/2 = -1
[-2;-1]
ответ: 4. Решением неравенства является закрытый промежуток
d) -x^2 + 4 < 0/*(-1)
x^2 - 4 > 0
x^2 > 4/
x > 2
(2; +∞)
ответ: 5. Решением неравенства является открытый прпромежуток