Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
А вот иррациональное - бесконечная периодическая дробь.
Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа.
Вот,например случай 2)-рациональное,очевидно,это 13.
Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное.
В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь)
Из 1,6 корень не извлечём.
Хочется 4 приплести,да не выйдет.
Не так давно объясняла другому человеку случай 4).
Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ.
Здесь 1 запятая после запятой.Случай 1 вылетает.
x+y =1
x⁴ +y⁴ =17
Симметричные уравнения
* * * Известно : (x+y)⁴ =x⁴ +4x³y +6x²y² +4xy²+y⁴ * * *
{x+y =1; (x+y)⁴ -4x³y -4xy³ -6x²y² =17.
{x+y =1;(x+y)⁴ -4xy(x²+y²) -6x²y² =17 .
{x+y =1;(x+y)⁴ -4xy ((x+y)² -2xy ) -6(xy)² =17 .
{x + y =1 ; 1 -4xy(1- 2xy) -6(xy)² =17 .
1 -4xy(1- 2xy) -6(xy)² =17 .
1 -4xy+8(xy)² -6(xy)² =17 .
2(xy)² - 4xy -16 =0 .
(xy)² - 2xy -8 =0 .
(xy)₁ = - 2;
(xy)₂ = 4 ;
a) { x+y =1; xy = -2 ⇔t² -t -2 =0 * * * x² -x -2 =0 или y² -y -2 =0 * * *
t₁ = -1 ;t₂ =2.
x₁ = -1 ; y₁ =2 или x₂ =2 ; y₂ = -1 .
(-1; 2) или (2 ;-1)
б) { x+y =1; xy =4=0 ⇔t² -t +4 =0 не имеет решения .
ответ : (-1; 2) , (2 ;-1)