Допустимые значения переменной "х" - это те значения, которые брать можно. А что значит: можно? Когда говорят про допустимые значения переменной "х", то имеют в виду такие значения, при которых данный пример решается ( можно вычислить ответ. И мы должны помнить, что иногда действия выполнить нельзя (делить на 0 нельзя и т.д.)) а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у" ответ: у - любое б)25/(у - 9) В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя. ответ: у ≠ 9 в) (у² +1)/(у² -2у) И здесь есть деление. посмотрим когда знаменатель = 0 у² - 2у = 0 у(у -2) = 0 у = 0 или у - 2 = 0 у = 2 ответ: у ≠ 0 ; у ≠ 2
Определим, какой цифрой должно оканчиваться число:
1. Оно должно делиться на 6: ⇒
должно быть, в первую очередь, чётным.
2. Оно должно делиться на 2. ⇒ должно быть чётным.
3. Оно должно делиться на 15. ⇒ должно делиться на 5 и 3,
то есть, в первую очередь, оканчиваться на 5 и на 0.
Таким образом, последняя цифра этого числа - 0.
Рассмотрим число 2025***0. Это число должно делиться на 3. ⇒
По признаку делимости на 3 - сумма цифр данного числа должна делиться на 3. 2025: 2+0+2+5=9 - делится на 3. ⇒
Сумма цифр *** должна делится на 3, а количество чисел *** будет количеством которыми можно расставить цифры от 0 до 9 вместо *** в выражении 2025∗∗∗0.
а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у"
ответ: у - любое
б)25/(у - 9)
В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя.
ответ: у ≠ 9
в) (у² +1)/(у² -2у)
И здесь есть деление.
посмотрим когда знаменатель = 0
у² - 2у = 0
у(у -2) = 0
у = 0 или у - 2 = 0
у = 2
ответ: у ≠ 0 ; у ≠ 2
Объяснение:
Определим, какой цифрой должно оканчиваться число:
1. Оно должно делиться на 6: ⇒
должно быть, в первую очередь, чётным.
2. Оно должно делиться на 2. ⇒ должно быть чётным.
3. Оно должно делиться на 15. ⇒ должно делиться на 5 и 3,
то есть, в первую очередь, оканчиваться на 5 и на 0.
Таким образом, последняя цифра этого числа - 0.
Рассмотрим число 2025***0. Это число должно делиться на 3. ⇒
По признаку делимости на 3 - сумма цифр данного числа должна делиться на 3. 2025: 2+0+2+5=9 - делится на 3. ⇒
Сумма цифр *** должна делится на 3, а количество чисел *** будет количеством которыми можно расставить цифры от 0 до 9 вместо *** в выражении 2025∗∗∗0.
Воспользуемся свойством арифметической прогрессии:
а₁=000 d=3 an=999 n=?
an=a₁+(n-1)*d
0+(n-1)*3=999
3n-3=999
3n=1002 |÷3
n=334. ⇒
ответ