37.2. Найдите значение выражения:
1) 2x – 1 при х = 3; 1; -5; -1,6; 100;
За – 7
І
при а = -2; – 0,4; 0; 2,5;
2а + 5
+
6-
4
в
+
при b = 3; 4,4; 5; 6;
во + +
+
4) 2x + при х = 0,5; 1; 3;
5) " 2", при у = 1,5; 2,5; 4; 4,5;
в) , а при х - 1,5; 2; 3;
+
(a+b)= -1
— при а = - 3, b = -1;
а” +1
2а - b 1
1.
1
а при а = 1,6 = 0,5.
1
φ = ±arccos(√2 / 2) + 2пk, kЄZ
φ = ±п/4 + 2пk, kЄZ
-4п<=φ<=0 (по условию)
-4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0
-9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4
-9/8<=k<=-1/8 -7/8<=k<=1/8
k=1 k=0
Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
φ = п/4 + 2п*1, kЄZ φ = -п/4 + 2п*0, kЄZ
φ = 9п/4, kЄZ φ = -п/4, kЄZ
Получили 2 значения угла с учетом промежутка, заданного условием.
Удачи!
Объяснение:
1) 2х² + 4ху + 2у²;=2(x²+2xy+y²)=2(x+y)²=2(x+y)(x+y)
2) 6х² - 12ху + 6у²=6(x²-2xy+y²)=6(x-y)²=6(x-y)(x-y)
3) 3а² – 6а + 3=3(a²-2a+1)=3(a-1)²=3(a-1)(a-1)
4) 2ху² + 4ху + 2х=2x(y²+2y+1)=2x(y+1)²=2x(y+1)(y+1)
2)(1,1х2 – 6у)²– (1,1х2 – 6у)(1,1х² + 6у)=1,21x^4-13,2x²y+36y²-(1,21x^4-36y²)=
=1,21x^4-13,2x²y+36y²-1,21x^4+36y²=72y²-13,2x²y
2) (2,3а – 7b³)(2,3а + 7b³) – (2,3а + 7b3)²= =5,29a²-49b^6-(5,29a²+32,2ab³+49b^6)=
5,29a²-49b^6-5,29a²-32,ab³-49b^6= -98b^6-32,2ab³
3) 1000 + a6 – (a² + 10)(a4 – 10a² + 100)=1000+a^6-(a^6+1000)=1000+a^6-a^6-1000=0
4) (1,1d – c³)(1,21 d² + 1,1c³d + c6) – 1,33 d³+ 2c9=(1,1d)³-(c^3)^3-1,33d^3+2x^9=
=1,331d³-c^9-1,33d³+2c^9=0,001d³+c^9