Обозначим сумму вклада через х, тогда по истечении срока вклада на счету стало [сумма вклада] + [проценты] = 100% от х + 104 1/6% от х = 204 1/6% от х. Избавимся от процентов:
Пусть вклад находился под ставкой 5% k месяцев, тогда по истечении этих месяцев сумма вклада стала равна .
Продолжая подобные рассуждения, получаем итоговую сумму вклада:
Продолжаем:
Из первого k=1, l=1 (так как все степени - натуральные положительные числа), дальше получаем m=3, n=2.
- это парабола, ветви которой направлены вверх. Соответственно, если вершина этой параболы будет лежать в области определения функции y (т.е. будет выше оси абсцисс), то именно в ней достигается наименьшее значение. Если у этой параболы есть корни, то наименьшее значение функции будет равно нулю (т.к. выражение под корнем не может быть меньше нуля). Дабы убедиться, что корней нет, проверим дискриминант:
Вещественных корней нет, будем искать координаты вершины.
Пусть вклад находился под ставкой 5% k месяцев, тогда по истечении этих месяцев сумма вклада стала равна .
Продолжая подобные рассуждения, получаем итоговую сумму вклада:
Продолжаем:
Из первого k=1, l=1 (так как все степени - натуральные положительные числа), дальше получаем m=3, n=2.
Срок хранения вклада: 1 + 1 + 3 + 2 = 7 месяцев.
Вещественных корней нет, будем искать координаты вершины.
Теперь, максимальное значение нашей функции