Формула работы: , р - производительность , t- время .
Если 6 насосов выкачивают воду из 1 бассейна за 10 часов, то за 1 час эти 6 насосов выкачают 1/10 часть бассейна. То есть производительность 6-ти насосов = 1/10 бассейна в час.
Производительность же 1 насоса равна (1/10):6=1/60 бассейна в час.
а) За 5 часов всю воду из 1 бассейна выкачают n насосов, то есть можно записать насосов.
За 15 часов всю воду из 1 бассейна выкачивают m насосов, то есть можно записать насоса.
б) Три насоса за 1 час выкачивают часть бассейна, значит всю воду из 1 бассейна три насоса выкачают за часов.
9 насосов за 1 час выкачивают часть бассейна, значит всю воду из 1 бассейна 9 насосов выкачают за часa.
Формула работы: , р - производительность , t- время .
Если 6 насосов выкачивают воду из 1 бассейна за 10 часов, то за 1 час эти 6 насосов выкачают 1/10 часть бассейна. То есть производительность 6-ти насосов = 1/10 бассейна в час.
Производительность же 1 насоса равна (1/10):6=1/60 бассейна в час.
а) За 5 часов всю воду из 1 бассейна выкачают n насосов, то есть можно записать насосов.
За 15 часов всю воду из 1 бассейна выкачивают m насосов, то есть можно записать насоса.
б) Три насоса за 1 час выкачивают часть бассейна, значит всю воду из 1 бассейна три насоса выкачают за часов.
9 насосов за 1 час выкачивают часть бассейна, значит всю воду из 1 бассейна 9 насосов выкачают за часa.
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5