39.16. Выполните действия: 4а р 7а - 14 2 - а 2 у 5а +y) 3(a +y)" 3 2 ax - ay by - bx' 13 с 12b cn - cm bm-bn а 5) а - а . 2х+43 x + 6 б) 5(а - b) 4(а - b)
Пусть печенья купили х кг, а конфет - у кг, тогда можно записать систему уравнений:
В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение;
Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья: x+18=38 x=38-18 x=20 (кг)
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.
В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение;
Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья:
x+18=38
x=38-18
x=20 (кг)
ответ: печенья купили 20 кг, а конфет - 18 кг.