Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
Подставим два корня в первое уравнение системы и получим совокупность систем [ { x = 5[1/3] [ { y = -1[1/3] [ [ { x = -2 [ { y = 6 ответ: (5[1/3]; -1[1/3]); (-2; 6)
Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
S20= (a1 + a20)/2 * 20 = (5 + 62)/2 * 20 = 67/2 * 20 = 67 * 10= 670.
Объяснение:
{ 5xy - x² = -64
Подставим у из первого уравнения во второе
{ y = 4 - x
{ 5x(4 - x) - x² = -64
Отдельно решим второе уравнение
5x(4 - x) - x² = -64
20x - 5x² - x² + 64 = 0
-6x² + 20x + 64 = 0
Разделим уравнение на -2
3x² - 10x - 32 = 0
Найдем упрощенный дискриминант и корни уравнения
D₁ = 5² + 32 · 3 = 25 + 96 = 121 = 11²
x₁ = (5 + 11) / 3 = 16 / 3 = 5[1/3]
x₂ = (5 - 11) / 3 = -2
Подставим два корня в первое уравнение системы и получим совокупность систем
[ { x = 5[1/3]
[ { y = -1[1/3]
[
[ { x = -2
[ { y = 6
ответ: (5[1/3]; -1[1/3]); (-2; 6)