Все формулы для вещественного случая работают и тут.
Дискриминант:
Дальше нужно будет извлечь корень из дискриминанта. В данном случае он легко угадывается, но пусть мы его не угадали; поищем такие вещественные a и b, что . Раскрываем скобки и получаем
Возводим второе уравнение в квадрат, получаем, что сумма и равна 8, их произведение – -9. По теореме, обратной к теореме Виета, и – корни уравнения , очевидно, , . Подстановкой убеждаемся, что равно .
{x-y=12
Подставляем во второе ур-е:
18-y-y=12
-2y=-6
y=3
x-3=12
x=15
ответ: x=15 y=3
{2x+5y=11
{y=-3
2x+5*(-3)=11
2x-15=11
2x=26
x=13
ответ: y=-3 x=13
{2x+3y=13
{4x-y=5 (домножаем на 3)
{2x+3y=13
{12x-3y=15 прибавляем 1 ур-е на 2
14x=28
x=2
4*2-y=5
8-y=5
-y=-3
y=3
ответ: x=2 y=3
{x/2+y/3=2 (умножаем на 6)
{2x-3y=-5
{3x+2y=12 (умножаем на 3)
{2x-3y=-5 (умножаем на -2)
{9x+6y=36
{-4x-6y=10 (прибавляем)
5x=46
x=46/5
подставляем x
2*46/5+3y=-5
y=-39/5
ответ: x=46/5 y=-39/5
{x+y=25 (домножаем на -2)
{4x+2y=70
{-2x-2y=-50
{4x+2y=70 (прибавляем)
2x=20
x=10
10+y=25
y=15
ответ: x=10 (четырехместных) y=15 (двухместных)
x = 3i или x = 3 + 2i
Объяснение:
Все формулы для вещественного случая работают и тут.
Дискриминант:
Дальше нужно будет извлечь корень из дискриминанта. В данном случае он легко угадывается, но пусть мы его не угадали; поищем такие вещественные a и b, что . Раскрываем скобки и получаем
Возводим второе уравнение в квадрат, получаем, что сумма и равна 8, их произведение – -9. По теореме, обратной к теореме Виета, и – корни уравнения , очевидно, , . Подстановкой убеждаемся, что равно .
Продолжаем применять формулы:
Это и есть ответ.