Итак у нас три дроби : первая : 3а/(а-4) вторая : (а+2) / (2а-8) третья : 96 / (а² + 2а) теперь порядок решения : 1)сначала умножение дробей ( вторую дробь не переворачиваем, т.к. это умножение) 2) вычитание дробей *при умножении дроби к общему знаменателю не приводят. *при умножении дробей, под общей чертой, можно сокращать (делить друг на друга) числа числителя и знаменателя. и так умножает 2-ую и 3-ью дроби получаем: (а+2) * 96 (а+2) * 96 1) = (2а-8) * (а²+2а) 2* (а-4) * а* (а+2) ↑ 2а-8 = как 2* (а-4) ↑ а²+2а = как а* (а+2) 2) и так, у нас в числителе и в знаменателе стоят знаки " * " поэтому мы можем сокращать числа : 96/2 = 48 (а+2)/(а+2) = 1 48 3) получаем дробь : а* (а-4) 1) теперь будем вычитать дроби : из 1-ой - полученную : 3а 48 - при вычитании (сложении) знаменатели должны (а-4) а * (а-4) быть одинаковыми, а у нас сейчас они разные 1) приводим дроби к общему знаменателю : домножаем первую дробь на " а ", при этом умножаем и числитель и знаменатель на " а " 2) получаем дробь (3а*а)/ а* (а-4) и вычитаем : 3а² * 48 3*а*48 144а = = сократить не можем ,т.к. знак минус в а * (а-4) а-4 а-4 знаменателе
ax² + bx + c = 0
D = b² - 4ac
x12 = (-b +- √D)/2a
D - это дискриминант
х12 - корни квадратного уравнения
+- это плюс минус
1
3x²+8x-21 = 3(x + (-4 - √79)/3)*(x + (-4 + √79)/3)
для разложения надо найти корни
D = 8² - 4*3*(-21) = 64 + 252 = 316
x12 = (-8 +- √316)/6 = (-4 +- √79)/3
2
5x²-4x+c=0
D = 16 - 20c = 0
16 - 20c = 0
20c = 16
c = 16/20 = 4/5
x12 = (4 + - 0)/10 = 4/10 = 2/5
корень 2/5
3
5x²-11 |x|-12=0
x² = |x|²
|x| вседа больше равен 0
5|x|²-11 |x|-12=0
D = 11² + 4*5*12 = 361 = 19²
|x| = (11 +- 19)/10 = 3 и -8/10
-8/10 < 0 не подходит
|x| = 3
x = 3
x = -3
ответ -3 и 3