В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Stanislav177
Stanislav177
15.02.2022 04:15 •  Алгебра

3cos^2*2x+7sin2x-3=0 уравнение решить

Показать ответ
Ответ:
GreatGenius
GreatGenius
17.09.2020 22:54
3(1-sin^2*2x)+7sin2x-3=3-3sin^2*2x+7sin^2*2x-3=0
sin2x = x
3(x^2)+7x=0
x(3x+7)=0
x=0 x=-7/3
sin2x=0
2x=\pin; n∈Z
x=\pi/2*n; n∈Z

sin2x=-7/3
2x=((-1)^(k-1))*arcsin(7/3)+\pik; k∈Z
x=((-1)^(k-1))*arcsin(7/3)/2+\pi/2*k: k∈Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота