Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.
9у4 = 1.
У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.
То есть У <> √1/3.
Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.
3у3 – 12у2 – у + 4 = 0.
Преобразуем выражение.
3у2 * (у – 4) – (у – 4) = 0.
Вынесем общий множитель (у – 4) за скобку.
(у – 4) * (3у2 - 1) = 0.
Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.
1) У – 4 = 0.
У = 4.
2) (3у2 - 1) = 0.
3у2 = 1.
у2 = 1/3.
У = √1/3, этот корень не подходит по условиям У <> √1/3.
1. у=-3х+1. Это монотонно убывающая функция, поэтому наибольшее и наименьшее значения достигаются на концах отрезка.
Наибольшее значения: у (-2) = (-3)*(-2) + 1 =7
Наименьшее значение: у (1) = (-3)*(1) + 1 = -2.
2. Находим вершину параболы: у=х²-4х +4 -4 = (х-2)² - 4, т. е вершина находится в точке х=2, при этом функция достигает наименьшего значения у= -4. Оно же будет наименьшим на отрезке [0:3]. Наибольшее будет при х=0 (т. к. эта точка дальше отстоит от вершины, чем х=3). при этом у (0) = 8
Объяснение:
Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.
9у4 = 1.
У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.
То есть У <> √1/3.
Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.
3у3 – 12у2 – у + 4 = 0.
Преобразуем выражение.
3у2 * (у – 4) – (у – 4) = 0.
Вынесем общий множитель (у – 4) за скобку.
(у – 4) * (3у2 - 1) = 0.
Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.
1) У – 4 = 0.
У = 4.
2) (3у2 - 1) = 0.
3у2 = 1.
у2 = 1/3.
У = √1/3, этот корень не подходит по условиям У <> √1/3.
Остается 1 корень у = 4.
ответ: у = 4.
1. у=-3х+1. Это монотонно убывающая функция, поэтому наибольшее и наименьшее значения достигаются на концах отрезка.
Наибольшее значения: у (-2) = (-3)*(-2) + 1 =7
Наименьшее значение: у (1) = (-3)*(1) + 1 = -2.
2. Находим вершину параболы: у=х²-4х +4 -4 = (х-2)² - 4, т. е вершина находится в точке х=2, при этом функция достигает наименьшего значения у= -4. Оно же будет наименьшим на отрезке [0:3]. Наибольшее будет при х=0 (т. к. эта точка дальше отстоит от вершины, чем х=3). при этом у (0) = 8
Объяснение: