Берём 15 победителей и ставим их аккуратно в линеечку :) а 15 книг начинаем переставлять между ними (уточним задачу - книги наверняка должны быть розданы по 1 каждому, а то ведь можно роздать кому по 2 и больше а кому и ничего): 1) берём первые 3 книги 15 победителям можем их роздать так: первую книгу мы можем роздать 15 вариантами, останется 14 детей и 2-рую книгу мы можем роздать 14 вариантами, ну и третью 13 вариантами оставшимся детям. Но поскольку книги одинаковые то у нас получится много одинаковых роздач, а точнее по 6 одинаковых роздач каждого вида. Почему шесть, для ответа рассмотрим роздачи 1, 2, и 3 победителям: поскольку мы книги роздавали по 1 (сначало 1, поток 2, потом 3) то щитаем что они у нас пронумерованы. 1 побед(1 книга) - 2 (2) - 3 (3) 1 (1) - 2 (3) - 3 (2) 1 (2) - 2 (1) - 3 (3) 1 (2) - 2 (3) - 3 (1) 1 (3) - 2 (1) - 3 (2) 1 (1) - 2 (2) - 3 (1) надеюсь суть уловили. поскольку по 6 одинаковых, то число роздач надо разделить на 6, получим:
Осталось 12 победителей, роздаем им 4 книги, аналогично описанному выше:
ну а уж тем 8 кому не досталось книг типа 1 или 2 с почестями и с одним однозначным вариантов вручаем книгу типа 3. а в результате получим:
А если вы чтото слышали о Комбинаторике и формулах:
то можете смело и без лишних слов написаить в ответе:
ООФ то что под корнем ≥0 ⇒ х³-5х²+6х≥0 чтобы решить это неравенство разложим на множители левую часть х(х²-5х+6)=х(х²-2х-3х+6)=х(х(х-2)-3(х-2))=х(х-2)(х-3)≥0 решим неравенство методом интервалов, нанесем корни х={0;2;3} на числовую ось и определим знаки выражения х(х-2)(х-3) (1) на каждом из этих интервалов, для этого надо взять любое число из каждого интервала подставить вместо х в выражение 1 и посмотреть с каким знаком получится значение выражения если >0 то+ если <0 то - например при х=10 10*(10-2)(10-3)=10*8*7=560>0 знак + , знаки на остальных интервалах можно не вычислять они будут чередоваться плюс с минусом так как функция у=х(х-2)(х-3) непрерывная см. картинку , выбираем те отрезки в которых значение выражения (1) ≥0 это и будет ООФ х∈[0;2]∪[3;+∞)
а 15 книг начинаем переставлять между ними (уточним задачу - книги наверняка должны быть розданы по 1 каждому, а то ведь можно роздать кому по 2 и больше а кому и ничего):
1) берём первые 3 книги 15 победителям можем их роздать так:
первую книгу мы можем роздать 15 вариантами, останется 14 детей и 2-рую книгу мы можем роздать 14 вариантами, ну и третью 13 вариантами оставшимся детям.
Но поскольку книги одинаковые то у нас получится много одинаковых роздач, а точнее по 6 одинаковых роздач каждого вида.
Почему шесть, для ответа рассмотрим роздачи 1, 2, и 3 победителям:
поскольку мы книги роздавали по 1 (сначало 1, поток 2, потом 3) то щитаем что они у нас пронумерованы.
1 побед(1 книга) - 2 (2) - 3 (3)
1 (1) - 2 (3) - 3 (2)
1 (2) - 2 (1) - 3 (3)
1 (2) - 2 (3) - 3 (1)
1 (3) - 2 (1) - 3 (2)
1 (1) - 2 (2) - 3 (1)
надеюсь суть уловили.
поскольку по 6 одинаковых, то число роздач надо разделить на 6, получим:
Осталось 12 победителей, роздаем им 4 книги, аналогично описанному выше:
ну а уж тем 8 кому не досталось книг типа 1 или 2 с почестями и с одним однозначным вариантов вручаем книгу типа 3.
а в результате получим:
А если вы чтото слышали о Комбинаторике и формулах:
то можете смело и без лишних слов написаить в ответе:
ответ:
х³-5х²+6х≥0
чтобы решить это неравенство разложим на множители левую часть
х(х²-5х+6)=х(х²-2х-3х+6)=х(х(х-2)-3(х-2))=х(х-2)(х-3)≥0
решим неравенство методом интервалов,
нанесем корни х={0;2;3} на числовую ось и определим знаки выражения х(х-2)(х-3) (1) на каждом из этих интервалов, для этого надо взять любое число из каждого интервала подставить вместо х в выражение 1 и посмотреть с каким знаком получится значение выражения если >0 то+ если <0 то -
например при х=10 10*(10-2)(10-3)=10*8*7=560>0 знак + , знаки на остальных интервалах можно не вычислять они будут чередоваться плюс с минусом так как функция у=х(х-2)(х-3) непрерывная см. картинку ,
выбираем те отрезки в которых значение выражения (1) ≥0 это и будет ООФ
х∈[0;2]∪[3;+∞)