В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
merimargaryan
merimargaryan
05.03.2022 02:22 •  Алгебра

√3sin4x+cos4x=0 решите уравнение и найдите √3sin4x+cos4x=0 решите уравнение и найдите его корни,принадлежащие отрезку (-pi/2; pi/2) полное решение,.

Показать ответ
Ответ:
StudPacker
StudPacker
07.07.2020 23:27
√3*sin(4x) = - cos(4x) - разделим обе части на √3*cos(4x)
tg(4x) = -1/√3 = -√3/3
4x = -π/6 + πk, k∈Z
x = -π/24 + (πk/4), k∈Z
x∈[-π/2; π/2]
Найдем, при каких k корни уравнения будут принадлежать указанному в условии отрезку:
-π/2 ≤ -π/24 + (πk/4) ≤ π/2
-π/2 + π/24 ≤ πk/4 ≤ π/2 + π/24
-11π/24 ≤ πk/4 ≤ 13π/24
-11/6 ≤ k ≤ 13/6, k∈Z
k = -1, 0, 1, 2
Итого будет 4 корня.
k = -1, x1 = -π/24 - π/4 = (-π - 6π)/24 = -7π/24
k = 0, x2 = -π/24
k = 1, x3 = -π/24 + π/4 = (-π + 6π)/24 = 5π/24
k = 2, x4 = -π/24 + 2π/4 = (-π + 12π)/24 = 11π/4

ответ: -7π/24, -π/24, 5π/24, 11π/24
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота