Согласно формуле разложения квадратного уравнения на множители a(x-x1)(x-x2): 1) D = 25 - 24 = 1 => x = (5+-1)/2 => x1 = 3, x2 = 2. ответ: (x-3)(x-2). 2) D = 49 - 48 = 1 => x = (7+-1)/2 => x1 = 4, x2 = 3. ответ: (x-4)(x-3). 3) D = 9 + 16 = 25 => x = (3+-5)/2 => x1 = 4, x2 = -1. ответ: (x-4)(x+1). 4) D = 4 + 60 = 64 => x = (-2+-8)/2 => x1 = 3, x2 = -5. ответ: (х-3)(х+5).
1) Вы уверены, что не попутали плюс и минус?) Доказать невозможно, поскольку два этих выражения не равны.. 2) (a+b)^2 = (a+b)(a+b). Умножим скобку на скобку. a^2 + ab + ba + b^2 = a^2 + 2ab + b^2 => (a+b)^2 = a^2 + 2ab + b^2. Доказали.
1) D = 25 - 24 = 1 => x = (5+-1)/2 => x1 = 3, x2 = 2.
ответ: (x-3)(x-2).
2) D = 49 - 48 = 1 => x = (7+-1)/2 => x1 = 4, x2 = 3.
ответ: (x-4)(x-3).
3) D = 9 + 16 = 25 => x = (3+-5)/2 => x1 = 4, x2 = -1.
ответ: (x-4)(x+1).
4) D = 4 + 60 = 64 => x = (-2+-8)/2 => x1 = 3, x2 = -5.
ответ: (х-3)(х+5).
1) Вы уверены, что не попутали плюс и минус?) Доказать невозможно, поскольку два этих выражения не равны..
2) (a+b)^2 = (a+b)(a+b).
Умножим скобку на скобку.
a^2 + ab + ba + b^2 = a^2 + 2ab + b^2
=> (a+b)^2 = a^2 + 2ab + b^2.
Доказали.
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3