1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
-2х²+10х-8≤0 Разделим для удобства на -2 (знак поменяется) х²-5х+4>=0 Приравниваем к нулю х²-5х+4=0 a=1 b=-5 c=4 Т.к. a=1, можно применить теорему Виета: x1 + x2 = -b = 5 x1 * x2 = c = 4 x1 = 1 x2 = 4 Подставляем значение из промежутка для проверки вместо x, например 2: -2*2²+10*2-8 = -8+20-8 = 4 (+) ,а нас интересуют отрицательные значения Подставляем значение до 1, например -1: -2*(-1²)+10*(-1)-8=-2-10-8=-20 (-) Подставляем значение после 4, например 5: -2*5²+10*5-8=-50+50-8 = -8 (-)
Следовательно, нас устраивают значения от минус бесконечности до 1 (включительно) и от 4 (включительно) до плюс бесконечности.
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
Разделим для удобства на -2 (знак поменяется)
х²-5х+4>=0
Приравниваем к нулю
х²-5х+4=0
a=1 b=-5 c=4
Т.к. a=1, можно применить теорему Виета:
x1 + x2 = -b = 5
x1 * x2 = c = 4
x1 = 1
x2 = 4
Подставляем значение из промежутка для проверки вместо x, например 2:
-2*2²+10*2-8 = -8+20-8 = 4 (+) ,а нас интересуют отрицательные значения
Подставляем значение до 1, например -1:
-2*(-1²)+10*(-1)-8=-2-10-8=-20 (-)
Подставляем значение после 4, например 5:
-2*5²+10*5-8=-50+50-8 = -8 (-)
Следовательно, нас устраивают значения от минус бесконечности до 1 (включительно) и от 4 (включительно) до плюс бесконечности.
ответ: (-∞;1] и [4;+∞]
Надеюсь, всё понятно)