4.41. на рис.4.4 изображени
полигон частот размеров муж-
ской обуви, проданной обувным
магазином за 1 день. по рисун-
ку найдите: 1) объем выборки; 2) l
вариационный ряд абсолютных
(относительных) частот; 3) раз- 2
мах выборки; 4) моду и медиану;
5) арифметическое среднее.
Начертим рисунок. Изобразим прямоугольный треугольник, один катет которого расположен горизонтально (на восток), а второй вертикально (на юг).
Для решения задачи применим теорему Пифагора.
Итак, скорость первого велосипедиста обозначим х км/ч,
скорость второго (х+4) км/ч.
Первый за 1 час проехал расстояние хкм/ч * 1 ч =х км
а второй (х+4)км/ч * 1 ч =х+4 км
Расстояние между велосипедистами (это гипотенуза прямоугольного треугольника) через 1 час оказалось 20 км.
Составим уравнение для решения задачи:
x=12(км/ч)-скорость первого
х+4=12+4=16(км/ч)-скорость второго
29 км/час скорость лодки в стоячей воде
Лодка по течению до встречи 67,2 (км)
Лодка против течения до встречи 54,6 (км)
Объяснение:
Задача2.
х = скорость лодки в стоячей воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
Общая скорость лодок до встречи: 121,8 (общее расстояние) : 2,1 (общее время) = 58 (км/час).
(х + 3) + (х - 3) = 58
2х = 58
х = 29 (скорость лодки в стоячей воде).
Лодка по течению до встречи: (29 + 3) * 2,1 = 67,2 (км)
Лодка против течения до встречи: (29 - 3) * 2,1 = 54,6 (км)
Проверка: 67,2+54,6=121,8 (км), всё верно.
Уравнение
3у/8-14 = -13+y/8 Избавляемся от дробного выражения, общий знаменатель 8:
3у-8*14= 8 8(-13)+у
3у-112= -104+у
3у-у= -104+112
2у=8
у=4