4. Amaranom morena no bot pioup into tomoro ropoan u apyrott. Cxopoct nproro wa 4 юм ч болни скорос и тор oro, пo и саrу нарыг олсосист при етна место на 9 часов раньше второго. Найдите скорость каждого алое наисти, и, что расстояние между городами рано 432
А+ 1/а ≥2 (а·а+1) / а ≥ 2 обе части умножаешь на знаменатель а а²+1≥ 2·а а²-2а +1≥0 Сначала приравняй к нулю, найди корни через дискриминант а²-2а +1=0 Д= b²-4ac= (-2)²-4·1·1= 0 значит корень один! а = (-b)/ 2a= 2/2 =1 Рисуй луч, лтложи на нём точку а= 1 ( корень)
1⇒
В первом интервале (от -∞ до 1) возьми пробную точку, например 0, подставь в нерав-во а+ 1/а ≥2 0 +1/0 ≥2 неверно,на ноль делить нельзя далее возьми проб точку из интервала от 1 до +∞,например 2 подставь в нерав-во 2+1/2≥2 верно, значит ответ буде, учитывая, что на ноль делить нельзя Х∈ от 1 до +∞, включая 1, так как неравенство нестрогое ≥
Нашей целью является нахождение точки, являющейся пересечением серединного перпендикуляра к отрезку АВ и оси Ох. А(-1;5) и В(7;-3) 1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ: s={7-(-1);-3-5} s={8;-8} 3) Находим нормаль к прямой АВ: n={-(-8);8} n={8;8} Сократим координаты на число 8, получим координаты нормали: n={1;1} 4) Составим уравнение серединного перпендикуляра к прямой АВ: (x-3)/1 = (y-1)/1 x-3=y-1 x-y-2=0 5) По условию, искомая точка лежит на оси Ох, значит ордината этой токи равна нулю. Ищем абсциссу: х-0-2=0 х=2 Итак, точка (2;0) - искомая
(а·а+1) / а ≥ 2 обе части умножаешь на знаменатель а
а²+1≥ 2·а
а²-2а +1≥0 Сначала приравняй к нулю, найди корни через дискриминант
а²-2а +1=0 Д= b²-4ac= (-2)²-4·1·1= 0 значит корень один!
а = (-b)/ 2a= 2/2 =1
Рисуй луч, лтложи на нём точку а= 1 ( корень)
1⇒
В первом интервале (от -∞ до 1) возьми пробную точку, например 0,
подставь в нерав-во а+ 1/а ≥2 0 +1/0 ≥2 неверно,на ноль делить нельзя
далее возьми проб точку из интервала от 1 до +∞,например 2
подставь в нерав-во 2+1/2≥2 верно, значит ответ буде, учитывая, что на ноль делить нельзя Х∈ от 1 до +∞, включая 1, так как неравенство нестрогое ≥
А(-1;5) и В(7;-3)
1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ:
s={7-(-1);-3-5}
s={8;-8}
3) Находим нормаль к прямой АВ:
n={-(-8);8}
n={8;8}
Сократим координаты на число 8, получим координаты нормали:
n={1;1}
4) Составим уравнение серединного перпендикуляра к прямой АВ:
(x-3)/1 = (y-1)/1
x-3=y-1
x-y-2=0
5) По условию, искомая точка лежит на оси Ох, значит ордината этой
токи равна нулю. Ищем абсциссу:
х-0-2=0
х=2
Итак, точка (2;0) - искомая