4. Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора. AB−→−{−5;6}.
B(−3;2); A( ... ; ... )
2. Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{−1;−7}.
M(6;4); N( ... ; ... )
За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1)
Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325
2х=50
х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений:
6х+6у=330
6×25+6у=330
6у=330-150
6у=180
у=180÷6
у=30 кубометров грунта в час вырывает второй экскаватор.
ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
Примем за 1 объём бассейна. Пусть через 3-ю трубу бассейн наполняется за x часов, значит, через 1-ю трубу он наполнится за x+8 часов, а через 2-ю - за x+8-6=x+2 часов. 1/x - скорость наполнения бассейна через 3-ю трубу, 1/(x+2) - скорость наполнения через 2-ю трубу и 1/(x+8) - через 1-ю.
Так как при одновременно открытых 1-й и 2-й трубе бассейн наполняется за то же самое время, что при открытой только 3-й трубе,то
1/(x+2)+1/(x+8)=1/x. Умножая обе части этого уравнения на x(x+2)(x+8), получим
x(x+8)+x(x+2)=(x+2)(x+8);
x^2+8x+x^2+2x=x^2+10x+16;
2x^2+10x=x^2+10x+16:
x^2=16, и так как x>0, то
x=4.
Таким образом через одну 3-ю трубу бассейн наполняется за 4 часа,
через одну 2-ю трубу - за 4+2=6 часов, и через одну 1-ю - за 4+8=12 часов.
Проверка: 1/6+1/12=1/4, 2/12+1/12=3/12.
ответ: Через одну третью трубу бассейн наполняется за 4 часа.