1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.
х=3+у
3(3+у)+у=5
9+3у+у=5
4у=-4
у=-1
Подставим найденное значение у в выраженное нами значение х:
х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно.
3*2+(-1)=6-1=5 - верно.
х=2, у=-1.
Б) Выразим у из первого уравнения системы и подставим во второе:
у=4-х²
2*(4-х²)-х=7
8-2х²-х=7
2х²+х-1=0
Д=1+8=9
х1=(-1+3):4=1/2
х2=(-1-3):4=-1
у=4-х²
При х1=1/2, у1=4-1/4=3 целых 3/4
При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое).
Подставляем:
4+(-2)=2
4-2=2
2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.