4. На складе в ящик укладывали коробки с некоторым товаром так, чтобы в каждом ящике было одно и то же количество коробок. Когда в каждый ящик укладывали по 24 коробки, то для трёх коробок не хватило места. Поэтому добавили 2 ящика, в результате удалось в каждом ящике разместить по одинаковому количеству коробок. Сколько первоначально использовали ящиков и сколько всего коробок нужно было уложить в ящики, если известно, что коробок было более 200, но менее 300?
Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит:
1 : 25=1/25 (времени), равный 100%
При увеличении на маршрут 6-ти автобусов, при общем их количестве:
25+6=31 (автобусов), интервал ожидания при курсировании составит:
1 : 31=1/31 (времени), равный х %
На основании этих данных, составим пропорцию:
1/25 - 100%
1/31 - х%
х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80%
Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на :
100% - 80%=20%
ответ: Б на 20%
Разделим таблицу на зеленые области, как показано на рисунке. Если в каждой области сумма чисел будет максимально возможной, то и во всей таблице она будет максимальной возможной.
1) Чтобы сумма чисел в зеленых квадратах 2×2 была максимальной, каждый квадрат должен состоять из 1, 2, 3, 3, что верно для всех зеленых квадратов из данной расстановки.
2) "Уголок" из трех чисел не может состоять только из троек, т.к. дополнив его до квадрата 2×2, мы не получим квадрат, содержащий все числа 1, 2, 3. Поэтому, максимальная сумма в уголке достигается, когда он состоит из 2, 3, 3, что верно для обоих уголков из данной расстановки.
3) Все оставшиеся области на рисунке состоят только из троек, и значит, они дают максимально возможные суммы.