Привет! Извини, что не могу быстро ответить! После уроков домой прихожу в 16.00-17.00, сижу здесь примерно в это время(после школы)! Задачка твоя: Разложение многочлена! Вынесение общего множителя за скобки. Пример: ab+ac-ad=a(b+a-d). То есть выносишь то, что есть в каждом множителе или тобой выбранном! группировки. Все члены многочлена не имеют общего множителя, но многочлены можно сгруппировать. Пример: 2a+bc+2b+ac=(2a+2b)+(bc+ac)=2(a+b)+c(b+a). Формулы сокращённого умножения! Вернемся к примеру. 1. Это уравнение и т.к. решить это с ходу в 7-8 классе тяжело упрощаем уравнение, а то есть левую часть! x^2-4y^2+4y-1=0 не подходит, т.к. не во всех членах есть одинаковая цифра/буковка. Действуем группировкой :) Группируем члены (x^2)^2-1-4y^2+4y(вроде ясно что я сгруппировала!) Теперь 1 = 1^2, 1^10000, 1^46785. Это понятно?! Теперь применяем к первой части(та что жирным выделена формулу разности квадратов x^2-y^2=(x-y)(x+y), а из второй части(подчёркнутой) из обоих частей выносим 4y Выходит: (x^2-1)(x^2+1)-4y(y+1). Всё: (x^2-1)(x^2+1)-4y(y+1)=0 Если задание требует, то решаем уравнение. Вроде правильно, я бы так сделала! Удачи!
Двузначное число обозначим как 10n+a, где n - число десятков, а - число единиц. При этом 1≤n≤9, 1≤a≤9, n∈Z, a∈Z, Z - множество целых чисел. По условию задачи запишем уравнение 10n+a=2na 10n=2na-a 10n=a(2n-1) a=10n/(2n-1) При n=1 а=10*1/(2*1-1)=10>9 При n=2 a=10*2/(2*2-1)∉Z При n=3 a=10*3/(2*3-1)=6. Двузначное число - 10*3+6=36 При n=4 a=10*4/(2*4-1)∉Z При n=5 a=10*5/(2*5-1)∉Z При n=6 a=10*6/(2*6-1)∉Z При n=7 a=10*7/(2*7-1)∉Z При n=8 a=10*8/(2*8-1)∉Z При n=9 a=10*9/(2*9-1)∉Z Таким образом, существует только одно двузначное число, которое в 2 раза больше произведения своих цифр - 36. Произведение его цифр - 3*6=18, 36/18=2.
Задачка твоя:
Разложение многочлена!
Вынесение общего множителя за скобки. Пример: ab+ac-ad=a(b+a-d).
То есть выносишь то, что есть в каждом множителе или тобой выбранном!
группировки. Все члены многочлена не имеют общего множителя, но многочлены можно сгруппировать. Пример: 2a+bc+2b+ac=(2a+2b)+(bc+ac)=2(a+b)+c(b+a).
Формулы сокращённого умножения!
Вернемся к примеру. 1. Это уравнение и т.к. решить это с ходу в 7-8 классе тяжело упрощаем уравнение, а то есть левую часть!
x^2-4y^2+4y-1=0
не подходит, т.к. не во всех членах есть одинаковая цифра/буковка.
Действуем группировкой :) Группируем члены
(x^2)^2-1-4y^2+4y(вроде ясно что я сгруппировала!)
Теперь 1 = 1^2, 1^10000, 1^46785. Это понятно?!
Теперь применяем к первой части(та что жирным выделена формулу разности квадратов x^2-y^2=(x-y)(x+y), а из второй части(подчёркнутой) из обоих частей выносим 4y
Выходит: (x^2-1)(x^2+1)-4y(y+1).
Всё: (x^2-1)(x^2+1)-4y(y+1)=0
Если задание требует, то решаем уравнение.
Вроде правильно, я бы так сделала!
Удачи!
По условию задачи запишем уравнение
10n+a=2na
10n=2na-a
10n=a(2n-1)
a=10n/(2n-1)
При n=1 а=10*1/(2*1-1)=10>9
При n=2 a=10*2/(2*2-1)∉Z
При n=3 a=10*3/(2*3-1)=6. Двузначное число - 10*3+6=36
При n=4 a=10*4/(2*4-1)∉Z
При n=5 a=10*5/(2*5-1)∉Z
При n=6 a=10*6/(2*6-1)∉Z
При n=7 a=10*7/(2*7-1)∉Z
При n=8 a=10*8/(2*8-1)∉Z
При n=9 a=10*9/(2*9-1)∉Z
Таким образом, существует только одно двузначное число, которое в 2 раза больше произведения своих цифр - 36. Произведение его цифр - 3*6=18, 36/18=2.