Вычислим расстояния между точками на координатной плоскости по формуле d=√(x2-x1)²+(y2-y1)²: |AB|=√(-3)²+(-3)²=√9+9=√18 |BC|=√4²+4²=√16+16=√32 |AC|=√1²+(-7)²=√50
По теореме косинусов a²=b²+c²-2bccosα вычислим cos углов A, B, C, |BC|²=|AB|²+|AC|²-2|AB||AC|cosA cosA=(|AB|²+|AC|²-|BC|²)/2|AB||AC| cosA=(18+50-32)/2*30=36/60=3/5
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох. Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
|AB|=√(-3)²+(-3)²=√9+9=√18
|BC|=√4²+4²=√16+16=√32
|AC|=√1²+(-7)²=√50
По теореме косинусов a²=b²+c²-2bccosα вычислим cos углов A, B, C,
|BC|²=|AB|²+|AC|²-2|AB||AC|cosA
cosA=(|AB|²+|AC|²-|BC|²)/2|AB||AC|
cosA=(18+50-32)/2*30=36/60=3/5
|AC|²=|AB|²+|BC|²-2|AB||BC|cosB
cosB=(|AB|²+|BC|²-|AC|²)/2|AB||BC|
cosB=(18+32-50)/2*24=0
|AB|²=|AC|²+|BC|²-2|AC||BC|cosC
cosC=(|AC|²+|BC|²-|AB|²)/2|AC||BC|
cosC=(50+32-18)/2*40=64/80=4/5
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1