4.Один із коренів рівняння у2+17у+с=0 дорівнює −12. Знайти другий корінь і вільний член с.
5. Знайти, при якому значенні а рівняння 3х2−6х+а=0 має один корінь і знайти цей корінь.
6. Не розв’язуючи рівняння х2+12х+6=0, знайти значення виразу :
1) 1 + 1 ; 1 2
22
2) 1 + 2 , де 1 і 2– корені цього рівняння
Чтобы уравнение имело действительное решение , достаточно чтобы дискриминант был неотрицательным.
D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0
То есть , необходимо доказать , что при любых a и b справедливо строгое неравенство :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)
(a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)
Заметим , что когда a=b , получаем что 0=0 , то есть условие выполнено. И в этом случае уравнение имеет бесконечно много решений.
Теперь, поскольку мы разобрали этот случай и (a-b)^2>=0 , то для случая a≠b , можно поделить обе части неравентсва на (a-b)^2 не меняя знак неравенства :
(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)
( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)
Теперь сделаем слудующий прием , поскольку (a^2+b^2)^2>0 при a≠b≠0
То можно поделить на это выражение обе части неравенства не меняя его знак :
( 1+ ab/(a^2+b^2) )^2>= 1+ 2ab/(a^2+b^2)
Тогда можно сделать замену:
ab/(a^2+b^2)=t
(1+t)^2>=1+2t
t^2+2t+1>=1+2t
t^2>=0 (верно)
Таким образом :
(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то есть D>=0.
Вывод : уравнение имеет действительное решение при любых действительных а и b.
Что и требовалось доказать.
Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]