угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
Надо проследить закономерности. при n=1 у=|x-1| - наименьшее значение равно 0 при х=1 при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
Итак, при четных n: при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2] при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3] при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4] ... при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при нечетных n: при n=1 у=|x-1| - наименьшее значение равно 0 при х=1; при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2 при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6 при х=3 .... при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
О т в е т.
при n=2k y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при n=2k-1 (нечетное число слагаемых) y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
ответ: 3) ВС1=6 4) С=НВА=30 А=СВН=60
Объяснение: 3)Угол АВС=180-(60+80)=40 СС1-биссектриса АСВ, значит угол ВСС1=ВСА/2=80/2=40 ВСС1=СВС1, т.е. треуг. ВСС1 равнобедрен. с основанием ВС, т.е. ВС1=СС1=6
4) по т.синусов Стороны треугольника пропорциональны синусам противолежащих углов. 16/sinB=8/sinC=8√3/sinA
AC^2=AB^2+BC^2 (т.Пифагора) BC^2=16^2-8^2=192 BC=8√3
угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4
при х∈[2;3]
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
Итак,
при четных n:
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3]
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
...
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при нечетных n:
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1;
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
....
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
О т в е т.
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
См. рисунки в приложении.