Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Объяснение:
∃ - квантор существования, читается "существует"
∀ - квантор всеобщности, читается "для любого"
Рассмотрим высказывания:
∃x ∃y x+y=2
"существует х и существует у, такие что выполняется условие х+у=2"
Истина. Действительно, такие числа существуют, например (1; 1), (2.5; -0.5) и т.д.
∀x ∀y x+y=2
"для любого х и для любого у выполняется условие х+у=2"
Ложь. Очевидно, не любые два числа в сумме дают 2. Например, это условие не выполняется для чисел (0; 1), (2; -0.5) и т.д.
∃x ∀y x+y=2
"существует х, такой что для любого у выполняется условие х+у=2"
Ложь. Предположим, что существует такой х, равный х₀. Тогда, выразив из формулы у, получим: у=2-х₀. Но так как х₀ - некоторая найденная константа, то и выражение (2-х₀) представляет собой константу. Но левая часть соответствует у, который может быть любым. Константа не может равняться одновременно любому выражению. Значит, такого х существовать не может. Например, если х=3, то равенство выполняется только при условии у=2-3=-1, пара (3; -1), ни при каком другом у с тем же х условие не выполняется.
∀x ∃y x+y=2
"для любого х, существует у, такой что выполняется условие х+у=2"
Истина. Выбирая "любой" х мы всегда можем вычислить соответствующее значение у по формуле у=2-х. Например, если х=π, то у=2-π, пара (π; 2-π), если х=0, то у=2-0=2, пара (0; 2), и т.д.
ответ: истинные высказывания 1, 4; ложные высказывания 2, 3