Перефразируем задание: когда функция больше 0 8-2х-х^2 >0 умножаем на -1( чисто для удобства нахождения корней, особенно по теореме виета), не забываем, что при умножение на -1 меняется знак неравенства х^2+2x-8 < 0 D= 4+32=36 x= (-2 +- 6) /2 х= 2 х=-4 наносим на числовую прямую нули будет, что-то типа 42 дальше решаем методом интервалов, так как вид уравнения правильный (х-2)(х+4) ( переписал наше уравнение сложив по формуле), то выставляем знаки справа налево меняя с + на - и так как нас интересует <0 ( именно меньше нуля, так как нули мы искали уже поменяв знак) то ответом будет отрезок от -4 до 2 , не включительно ответ: (-4;2)
ΔАВС , АВ=13 , АС=11 , ВС=20
Наименьший угол в треугольнике лежит против наименьшей стороны,
то есть ∠В - наименьший, сторона АС=11 - наименьшая.
ВМ ⊥ пл. АВС ⇒ ВМ ⊥ любой прямой , лежащей в пл. АВС, в том числе и высоте треугольника ВН, ВН ⊥ АС.
Тогда по теореме о трёх перпендикулярах МН⊥АС (ВН - проекция МН на пл. АВС) ⇒ МН=24.
Найдём ВН , используя две формулы нахождения площади ΔАВС.
S(ABC)=1/2*АС*ВН ⇒ ВН=2S/АС .
Полупериметр р=1/2*(11+13+20)=22 ,
S=√p*(p-a)(p-b)(p-c)=√(22*11*9*2)=66 .
ВН=2*66/11=12 .
ΔВМН: ∠МВН=90° , ВМ=√(МН²-ВН²)=√(24²-12²)=√432=12√3
8-2х-х^2 >0
умножаем на -1( чисто для удобства нахождения корней, особенно по теореме виета), не забываем, что при умножение на -1 меняется знак неравенства
х^2+2x-8 < 0
D= 4+32=36
x= (-2 +- 6) /2
х= 2
х=-4
наносим на числовую прямую нули
будет, что-то типа
42
дальше решаем методом интервалов, так как вид уравнения правильный (х-2)(х+4) ( переписал наше уравнение сложив по формуле), то выставляем знаки справа налево меняя с + на -
и так как нас интересует <0 ( именно меньше нуля, так как нули мы искали уже поменяв знак)
то ответом будет отрезок от -4 до 2 , не включительно
ответ: (-4;2)