1 1+(y+1)/(y-2)=(3y+1)/(y+2) Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2 (y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2) y²-4+y²+2y+y+2-3y²+6y-y+2=0 -y²+8y=0 -y(y-8)=0 y=0 y=8 2 5-(2y-2)/(y+3)=(y+3)/(y-3) Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3 5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3) 5y²-45-2y²+6y+2y-6-y²-6y-9=0 2y²+2y-60=0 y²+y-30=0 y1+y2=-1 U y1*y2=-30 y1=-6 U y2=5 3 y/(y+3)-1/(y-3)=18/(y-3)(y+3) Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3 y(y-3)-(y+3)=18 y²-3y-y-3-18=0 y²-4y-21=0 y1+y2=4 U y1*y2=-21 y1=7 U y2=-3 не удов усл 4 7/(y+2)+8/(y-2)(y+2)=y/(y-2) Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2 7(y-2)+8=y(y+2) y²+2y-7y+14-8=0 y²-5y+6=0 y1+y2=5 U y1*y2=6 y1=3 U y2=2 не удов усл
1+(y+1)/(y-2)=(3y+1)/(y+2)
Общий знаменатель (у-2)(у+2)≠0⇒y≠2,y≠-2
(y-2)(y+2)+(y+1)(y+2)=(3y+1)(y-2)
y²-4+y²+2y+y+2-3y²+6y-y+2=0
-y²+8y=0
-y(y-8)=0
y=0 y=8
2
5-(2y-2)/(y+3)=(y+3)/(y-3)
Общий знаменатель (y+3)(y-3)≠0⇒y≠-3,y≠3
5(y+3)(y-3)-(2y-2)(y-3)=(y+3)(y+3)
5y²-45-2y²+6y+2y-6-y²-6y-9=0
2y²+2y-60=0
y²+y-30=0
y1+y2=-1 U y1*y2=-30
y1=-6 U y2=5
3
y/(y+3)-1/(y-3)=18/(y-3)(y+3)
Общий знаменатель (y-3)(y+3)≠0⇒y≠3,y≠-3
y(y-3)-(y+3)=18
y²-3y-y-3-18=0
y²-4y-21=0
y1+y2=4 U y1*y2=-21
y1=7 U y2=-3 не удов усл
4
7/(y+2)+8/(y-2)(y+2)=y/(y-2)
Общий знаменатель (y-2)(y+2)≠0⇒y≠2,y≠-2
7(y-2)+8=y(y+2)
y²+2y-7y+14-8=0
y²-5y+6=0
y1+y2=5 U y1*y2=6
y1=3 U y2=2 не удов усл
Based on two different cases:
x
=
π
6
,
5
π
6
or
3
π
2
Look below for the explanation of these two cases.
Explanation:
Since,
cos
x
+
sin
2
x
=
1
we have:
cos
2
x
=
1
−
sin
2
x
So we can replace
cos
2
x
in the equation
1
+
sin
x
=
2
cos
2
x
by
(
1
−
sin
2
x
)
⇒
2
(
1
−
sin
2
x
)
=
sin
x
+
1
or,
2
−
2
sin
2
x
=
sin
x
+
1
or,
0
=
2
sin
2
x
+
sin
x
+
1
−
2
or,
2
sin
2
x
+
sin
x
−
1
=
0
using the quadratic formula:
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for quadratic equation
a
x
2
+
b
x
+
c
=
0
we have:
sin
x
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
1
)
2
⋅
2
or,
sin
x
=
−
1
±
√
1
+
8
4
or,
sin
x
=
−
1
±
√
9
4
or,
sin
x
=
−
1
±
3
4
or,
sin
x
=
−
1
+
3
4
,
−
1
−
3
4
or,
sin
x
=
1
2
,
−
1
Case I:
sin
x
=
1
2
for the condition:
0
≤
x
≤
2
π
we have:
x
=
π
6
or
5
π
6
to get positive value of
sin
x
Case II:
sin
x
=
−
1
we have:
x
=
3
π
2
to get negative value of
sin
x
Answer link
Объяснение: