4. Вероятность того, что у случайно выбранного жителя города есть микроволновая печь составляет р=0,742 а) Сколько микроволновых печей имеется у 500 жителей города? b) Если у 1113 жителей среди о есть микроволновая печь, то сколько жителей были о ?
Число кратно 3, если cумма цифр числа кратна 3. Число кратно 4, если две последние цифры числа кратны 4.
Рассмотрим условия по порядку.
1) Произведение цифр.
Разложим 24 на множители. 24=2·2·2·3. Получены 4 цифры, а нужно получить пять. Если мы добавим цифру 1 в произведение, то результат не изменится: 24 = 1·2·2·2·3.
Итого, имеем 5 цифр, из которых можно составить пятизначное число.
Первое условие выполнено. 2) Условие - число кратно 3 Признак делимости на 3: На 3 делятся те и только те числа, сумма цифр которых кратна 3.
Возможны варианты Цифры числа 1; 2; 2; 2; 3. Сумма цифр 1+2+2+2+3=10 не кратна 3.
Цифры числа 1;1; 2; 3; 4 Сумма цифр 1+1+2+3+4= 11 не кратна 3.
Цифры числа 1;1;1; 4; 6 Сумма цифр 1+1+1+4+6= 13 не кратна 3.
Цифры числа 1;1;1; 3; 8 Сумма цифр 1+1+1+3+8= 14 не кратна 3.
Число кратно 3, если cумма цифр числа кратна 3.
Число кратно 4, если две последние цифры числа кратны 4.
Рассмотрим условия по порядку.
1) Произведение цифр.
Разложим 24 на множители.
24=2·2·2·3.
Получены 4 цифры, а нужно получить пять.
Если мы добавим цифру 1 в произведение, то результат не изменится:
24 = 1·2·2·2·3.
Итого, имеем 5 цифр, из которых можно составить пятизначное число.
Первое условие выполнено.
2) Условие - число кратно 3
Признак делимости на 3: На 3 делятся те и только те числа, сумма цифр которых кратна 3.
Возможны варианты
Цифры числа 1; 2; 2; 2; 3.
Сумма цифр 1+2+2+2+3=10 не кратна 3.
Цифры числа 1;1; 2; 3; 4
Сумма цифр 1+1+2+3+4= 11 не кратна 3.
Цифры числа 1;1;1; 4; 6
Сумма цифр 1+1+1+4+6= 13 не кратна 3.
Цифры числа 1;1;1; 3; 8
Сумма цифр 1+1+1+3+8= 14 не кратна 3.
Других вариантов нет.
О т в е т. Нет такого числа
(x-1)(x-2)(x-3)(x-4)=9/16
(x-2)(x-3) = х² - 5х + 6
(х - 1)(х - 4) = х² - 5 х + 4 = (х² - 5х + 6) - 2
[(х² - 5х + 6) - 2]·(х² - 5х + 6) = 9/16
(х² - 5х + 6)² - 2·(х² - 5х + 6) - 9/16 = 0
замена у = х² - 5х + 6
у² - 2у - 9/16 = 0
D = 4 + 9/4 = 25/4
√D = 5/2
y₁ = (2 - 5/2):2 = -1/4
y₂ = (2 + 5/2):2 = 9/4
возвращаемся к замене
1) х² - 5х + 6 = -1/4
х² - 5х + 25/4 = 0
D = 25 - 25 = 0
x = 5/2 = 2,5
2) х² - 5х + 6 = 9/4
х² - 5х + 15/4 = 0
D = 25 - 15 = 10
√D = √10
x₁ = (5 - √10):2 = 2,5 - √2.5 = √2.5 (√2.5 - 1)
x₂ = (5 + √10):2 = 2,5 + √2.5 = √2.5 (√2.5 + 1)
ответ: уравнение имеет два различных корня
x₁ = √2.5 (√2.5 - 1) и x₂ = √2.5 (√2.5 + 1)
и кратный корень
х₃ = х₄ = 2,5