Пусть 1 кг арбуза стоит х грн, а 1 кг дыни у грн, тогда за 7 кг арбуза заплатили 7х грн, а за 3 кг дыни - 3у грн, а вместе 7х + 3у, что равно 5,90 грн. За 8 кг арбуза заплатили 8х грн, а за 6 кг дыни – 6у, по условию имеем 6у – 8х = 0,8. Имеем систему уравнений 7х +3у = 5,9 6у – 8х =0,8
Умножим первое уравнение на 2: 14х + 6у = 11,8. Отнимем от первого уравнения второе: 14х + 6у - 6у +8х = 11,8 – 0,8; 22х = 11, х= 0,5; 7·0,5 + 3у =5,9; у = (5,9 – 3,5):3 =0,8
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Пусть 1 кг арбуза стоит х грн, а 1 кг дыни у грн, тогда за 7 кг арбуза заплатили 7х грн, а за 3 кг дыни - 3у грн, а вместе 7х + 3у, что равно 5,90 грн. За 8 кг арбуза заплатили 8х грн, а за 6 кг дыни – 6у, по условию имеем 6у – 8х = 0,8.
Имеем систему уравнений
7х +3у = 5,9
6у – 8х =0,8
Умножим первое уравнение на 2: 14х + 6у = 11,8. Отнимем от первого уравнения второе: 14х + 6у - 6у +8х = 11,8 – 0,8; 22х = 11, х= 0,5; 7·0,5 + 3у =5,9; у = (5,9 – 3,5):3 =0,8
ответ: 1кг арбуза 0,5 грн = 50 коп.; 1 кг дыни 0,8 грн = 80 коп.